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1. Introduction to Ophthalmic Optics 
The purpose of this workbook is to provide an 
understanding of ophthalmic lenses (spectacle lenses) 
and how they are designed to correct vision. In order to 
provide this understanding, the essential fundamentals 
of physical, geometrical, and visual optics are presented 
as they relate to the eye and vision. 

This book provides a working and practical background 
in ophthalmic optics for those working in the field or 
training to do so. The book has been written primarily 
for those who work in eye care offices or optical 
dispensaries. However, the book can be equally useful 
for those working for ophthalmic manufacturers, for 
optical laboratories or in sales of ophthalmic product. 
The text can readily be used in a programmed training 
course. It could also be particularly useful for anyone 
preparing to take an examination in ophthalmic optics. 

1.1 BACKGROUND 

Ophthalmic means “of or pertaining to the eye”.  
Therefore, ophthalmic optics includes any optics that 
pertain to the eye. Technically, this includes spectacle 
lenses, the optics of the eye itself, contact lenses, intra-
ocular lenses, and even refractive surgery and optical 
instruments used to examine the eye. However, in 
common usage, “ophthalmic optics” most specifically 
refers to spectacle lenses, and that is the topic of this 
book. 

In order to provide a practical and useful understanding 
of ophthalmic optics, it is necessary to learn some 
fundamental optics and principles. But before we dive 
into the optics, it is best that the reader have a basic 
understanding of the ophthalmic industry.  If you are 
already working in the industry, you may choose to skip 
this section. 

1.2 REFRACTIVE ERRORS AND LENSES 

Spectacle lenses are the most common method of 
correcting refractive errors and enabling people to see 
well. Contact lenses and refractive surgery are other 
options. Refractive errors include myopia or near-
sightedness, and hyperopia or far-sightedness. Myopia 
and hyperopia are corrected with spherical lenses of 
minus and plus power respectively. A spherical lens has 
circular curves. While looking straight at a spherical 
lens as it is worn before the eye, any radial cross section 
of the lens (i.e. a cross section that includes the center 
of the lens—also called a meridian of the lens) will 
have the same lens curvatures and the same power. This 
is illustrated in Figure 1:1. A result of this is that the 
rotational position of the lens before the eye is 
unimportant. In other words, while looking at the 
wearer and assuming that the lens is properly centered 
in front of the eye, if the lens were to rotate (say, within 

a circular eyeglass frame), it would have no effect upon 
vision. When prescribing, fitting, or manufacturing 
spherical lenses the lens must be properly centered 
before the eye, but the rotational position of the lens 
before the eye is unimportant. Spherical lenses are 
specified by their spherical power only. 

+2.00 D

+2.00 D

+2.00 D

+2.00 D

 
FIGURE 1:1 A spherical lens has the same power in every 
meridian. 

Astigmatism is a non-spherical refractive error and can 
exist along with myopia or hyperopia. Astigmatism is 
corrected with a sphero-cylindrical lens in which the 
power is different in different lens meridians, as shown 
in Figure 1:2. Most commonly, astigmatism is caused 
by a non-spherical cornea of the eye and requires a 
sphero-cylindrical correction in which the power varies 
by lens meridian. For sphero-cylindrical lenses, the lens 
center must be properly located before the eye and its 
rotational position before the eye is also critical. 
Sphero-cylindrical lenses are specified by their 
spherical power, their cylindrical power (effectively the 
meridional power variation), and the rotational position 
or axis of the lens. 

+3.00 D

+2.00 D

+2.00 D

+3.00 D

 
FIGURE 1:2 A sphero-cylindrical lens varies in power from 
meridian to meridian. 

Myopia, hyperopia and astigmatism, by themselves, 
require correction by single vision lens. Single vision 
lenses are designed to have a single spherical or sphero-
cylindrical power in the lens. Multifocal lenses have 
more than one designed power in the lens. Examples of 
multifocals include bifocals, trifocals, and progressive 
addition lenses, as illustrated in Figure 1:3. Multifocal 
lenses are most commonly prescribed for presbyopia, 
an age-related condition in which people lose the ability 
to change the focus of their eye to see clearly within 
arms’ length—usually occurring in the mid-to-late 
forties. Multifocal lenses have a near-power addition to 
enable people with presbyopia to see clearly when they 
view near objects. 
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C  
FIGURE 1:3 A) A bifocal lens, B) a trifocal lens, and C) a 
progressive addition lens. 

The power addition is located in the lower portion of 
the lens since people most commonly look downward 
when viewing near objects. Obviously, it is important 
that a multifocal lens be properly centered and properly 
rotated in front of the eye so that the near power is 
located downward. Multifocal lenses are specified by 
sphero-cylindrical power and axis in the top, or distance 
portion of the lens, along with the type of multifocal 
and the add power of the multifocal. 

1.3 LENS MANUFACTURING 

Most spectacle lenses are initially fabricated as round 
lens blanks by an optical manufacturer. These lens 
blanks require further fabrication before they can be 
inserted into a frame and provided to the patient. The 
additional fabrication is often completely provided by 
an optical laboratory, which purchases the lens blanks 
from the manufacturer, completes the fabrication and 
then sends the glasses to an optical dispensary where 
they are provided to the patient. Some, or even all, of 
the additional fabrication may be provided at the 
dispensary location. 

The particular manufacturing path taken can depend 
upon many factors, including the refractive correction, 
the lens design that has been ordered, the material of the 
lens, the lens options such as coatings or tints and the 
mode of operation preferred by the dispenser. Only 
some of the basic factors are discussed here. 

Manufacturers make finished and semi-finished lens 
blanks. Finished lens blanks have finished optical 
surfaces on the front and back of the lens and have the 
complete final power that is required for the 
prescription. A finished lens, unless tinting or coating is 
first required, is ready to be edged (by a machine called 
an edger) to fit into the frame. Finished lenses are 

nearly always single vision lenses. It is usually cost-
effective for a laboratory to maintain an inventory of 
finished lenses that have the most common spherical 
and cylindrical power combinations. This can also be 
cost-effective for many dispensaries. When a particular 
sphero-cylindrical power is required for the 
prescription, the finished lens containing that power is 
selected from inventory, it is properly rotated so that its 
axis matches that required by the prescription, and then 
the lens is edged and inserted into the frame.  

Semi-finished lens blanks, which do not have a 
finished back surface, are used for prescriptions for 
which it is not cost-effective to maintain finished 
inventory at the laboratory or dispensary.  This occurs 
most often for multifocal lenses and for single vision 
lenses of higher powers. In the case of multifocals, it 
becomes nearly impossible to carry all combinations of 
sphero-cylindrical and add powers—especially when 
considering that the multifocal optics require a certain 
orientation (down) as does the axis of the cylinder 
correction.   

For multifocal lenses, the multifocal optics are on the 
front lens surface of the semi-finished lens blank which 
is provided by the manufacturer. At the laboratory, the 
semi-finished blank which contains the correct 
curvature and correct multifocal type and add is selected 
from inventory, the multifocal is properly oriented, and 
then the back surface is ground and polished to contain 
the proper sphero-cylindrical power and axis with 
respect to the multifocal. This process is referred to as 
surfacing or finishing the lens. The lens is now ready 
for edging and insertion into the frame. Surfacing 
requires more expensive equipment than edging, so it is 
less often performed at the dispensing location. 

The above descriptions provide only the basics about 
the supply chain of spectacle lenses. There are many 
variations dependent upon other lens features or upon 
the chosen mode of business. However, these 
descriptions provide an orientation to the industry that 
will make your upcoming study of ophthalmic optics 
more meaningful. 

1.4 TOPICS 

Many of the topics covered in this book are typically 
presented with rigorous mathematics. Since this text is 
intended for those in clinical or laboratory careers, the 
mathematical treatment of the subjects has been 
minimized in both amount and complexity. However, it 
is not possible to cover these optical topics without 
some mathematical treatment. Some fundamental 
principles and concepts are provided in the appendix at 
the end of this text. We encourage the reader to peruse 
this appendix beforehand. 
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For a more detailed treatment of any of the topics 
presented here, the reader is also encouraged to review 
the appropriate references from the works cited list. The 
basic optical principles discussed throughout this paper 
will be presented in the following sequence: 

• The nature of light 
• Refraction and reflection 
• Focal power 
• Sphero-cylindrical lenses 
• Mechanics of lens form 
• Ophthalmic prisms 
• Visual optics 
• Spectacle frames and fitting 
• Ophthalmic lenses and design 
• Lens materials 
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2. Nature of Light 
Since the time of Plato, scientists have theorized about 
the exact nature of light. The renowned physicist, Isaac 
Newton, proposed that light consisted of streams of 
minute particles that were emitted from a source. He 
called this the corpuscular theory of light. In the late 
1600s, Robert Hooke and Christian Huygens each 
suggested that light emanated from a source in the form 
of waves, much like ripples across a pond. This has 
become known as the wave theory of light. At least 
one of these two theories could be applied to explain the 
various phenomena produced by light. Still, neither of 
them was able to completely explain every aspect of the 
complex behavior of light. 

Scientists broke further ground in the 1800s when 
Thomas Young was able to substantiate the wave nature 
of light with his “double-slit experiment.” Another 
milestone came a few years later when James Maxwell 
suggested that light was, in fact, a form of 
electromagnetic radiation. Maxwell discovered that 
certain types of energy traveled through space via 
waves of electromagnetic radiation, which consisted of 
oscillating electrical and magnetic fields vibrating 
perpendicularly to the direction of their propagation 
(or travel). This integrated the wave theory of light with 
the principles of electromagnetism. 

2.1 ELECTROMAGNETIC RADIATION 

To understand electromagnetic (EM) radiation, one 
needs to know that a changing magnetic field produces 
a changing electrical field perpendicular to it—a 
phenomenon known as electromagnetic induction. 
Likewise, a changing electrical field produces a 
changing magnetic field. At some critical speed, mutual 
induction occurs between these changing fields and they 
regenerate each other indefinitely. All electromagnetic 
waves—including light—travel at this critical speed, 
which is approximately 300,000 kilometers per second 
(186,000 miles per second) in free space. Figure 2:1 
depicts these oscillating electric and magnetic fields, 
which are perpendicular to one another and compose 
waves of electromagnetic radiation. 

So electromagnetic radiation comprises transverse 
waves (as opposed to longitudinal waves, like sound), 
which oscillate about their direction of travel. These 
waves are periodic, since they repeat at regular 
intervals. They are also harmonic, since they can be 
described by a simple sine function (Keating 452). 

Wavelength λ 

M

E

 
FIGURE 2:1 Electrical and magnetic fields propagating 
through space as an electromagnetic wave. 

Figure 2:2 depicts a progression of such 
electromagnetic waves, called a wave train. 

Amplitude

Amplitude

+
-

Wavelength

Crest

Trough  
FIGURE 2:2 The electromagnetic wave train is sinusoidal in 
form, and has repeating crests (maximum + amplitude) and 
troughs (minimum - amplitude). 

The relationship between the frequency f, or the 
number of vibrations per second of an EM wave train; 
the wavelength λ, which is the distance from one crest 
to another; and the velocity of light V, in meters per 
second, is given by 

EQ. 1 f
V

=
λ

 

Thus, the frequency of an electromagnetic emanation is 
inversely proportional to its wavelength, and vice versa; 
as the wavelength increases, the frequency decreases. 
Frequency is given in cycles per second, or Hertz. 

We think of light as the visible portion of the 
electromagnetic spectrum, which consists of cosmic 
rays at one end, and radio waves at the other. This 
region consists of EM radiation ranging from 380 to 
760 nanometers (one billionth of a meter) in length. 
This is only 0.000380 to 0.000760 millimeters! The full 
EM spectrum is illustrated in Figure 2:3 (Smith & 
Atchison 6). 

White light is composed of all the wavelengths in the 
visible spectrum. Individual wavelengths within the 
visible spectrum, by themselves, create different color 
sensations as shown in Table 1. These are the spectral 
colors. 
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FIGURE 2:3 Electromagnetic spectrum. The wavelengths, in 
meters, have been expressed in logarithms of the common 
base 10. The wavelengths of visible light, for instance, lie 
between 10-7 and 10-6 m. 

TABLE 1 The UV, visible, and IR spectrum 

Wavelength (nm) Color 
200 to 380 Ultraviolet 
380 to 450 Violet 
450 to 490 Blue 
490 to 560 Green 
560 to 590 Yellow 
590 to 620 Orange 
620 to 760 Red 

760 to 1,000,000 Infrared 

Remember that colors with shorter wavelengths, like 
blue and violet, have higher frequencies. Ultraviolet 
(UV) radiation and infrared (IR) radiation are also 
listed in Table 1, because they are immediately adjacent 
to the visible portion of the EM spectrum. However, 
they do not create the sensation of vision and are 
therefore not classified as light. 

2.2 QUANTUM THEORY 

Although the electromagnetic wave explanation of light 
seemed to be the most complete, it still failed to account 
for certain effects produced by light, like the 
photoelectric effect. In the early 1900s, Max Planck 
hypothesized that radiation wasn’t simply produced in 
continuous waves of energy by the source, but rather 
discrete packets of energy that he called quanta. 

A few years later, Albert Einstein extended Planck’s 
quantum theory to light, and called these bundles of 
energy photons. Einstein proposed that light consisted 

of streams of these high-speed energy particles. The 
energy of a photon is directly proportional to its 
frequency; so electromagnetic radiation with a higher 
frequency also has a higher energy level. The energy 
content of ultraviolet light, for instance, is greater than 
that of infrared radiation. In essence, this theory of light 
was simply another form of the particle theory. 

Today we say that light has a dual nature, with both 
particle-like and wave-like properties. Though, for our 
purposes, the differences are only academic. In 
summary, we will assume for our purposes that light 
consists of high-speed particles of energy—or 
photons—that travel in a wave-like manner (Sears 6). 

2.3 SOURCES OF LIGHT 

Light is emitted by a luminous (or primary) source, 
which generates the radiation. This radiation is often 
produced by heat, and such sources include the sun, 
incandescent light bulbs, fire, etc. Other objects are 
visible because they reflect light from luminous sources. 
These objects are called secondary sources. For 
instance, you can see a red car down the road because it 
is absorbing every color of white light from the sun, 
except red. The color red is reflected off the car, which 
then serves as a secondary source for observers 
(Keating 2). 

2.4 INDEX OF REFRACTION 

Recall that waves of light travel at a constant velocity of 
approximately 300,000 km/s in free space. In other 
transparent media, including lens materials, waves of 
light will be transmitted at a slower rate. The velocity of 
light in other media will vary as a function of the index 
of refraction n for that material. The index of refraction 
n of a transparent medium, which is also called the 
refractive index, is the ratio of the velocity of light in 
air (VAIR) compared to the velocity of light in the 
material (VMATERIAL): 

EQ. 2 n
V

V
AIR

MATERIAL

=  

Except for air (and vacuums) which has a refractive 
index of 1, the refractive index of most substances is 
greater than unity (n > 1). Water, for instance, has a 
refractive index of 1.333. 

In reality, the refractive index of any material varies 
slightly as a function of the wavelength. This means that 
various colors of light will actually have different 
indices of refraction in the same lens material! This is a 
result of the fact that colors of light with shorter 
wavelengths, like violet, travel more slowly through 
most transparent materials than colors with longer 
wavelengths, like red. Therefore, violet light has a 
higher index of refraction than red. 
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This phenomenon is responsible for the chromatic 
dispersion of white light into its component colors by 
prisms and also lenses. For now, we will assume an 
average wavelength of 587.56 nm for all calculations. 
This yellow-green color, produced by the helium d line, 
is the standard reference wavelength for ophthalmic 
optics in the United States. In some countries, 546.07 
nm is used as the reference wavelength, which is 
produced by the mercury e line. This means that the 
power of a lens or prism is based upon the refractive 
index that the material has for the chosen reference 
wavelength. 

Example 

A ray of light travels at a velocity of 200,000 km/s 
through a particular lens material. What is the index of 
refraction for that lens material? 

n
,
,

=
300 000
200 000

 

n = 1500.  

∴ Index of refraction is 1.500 

2.5 CURVATURE 

Throughout this workbook, we will rely on the concept 
of the curvature of a surface. The curvature R is 
defined as the angle through which the surface turns in 
a unit length of arc, which is when the length of the arc 
equals 1 m. The curvature R is given simply by (Fannin 
& Grosvenor 24), 

EQ. 3 R
r

=
1

 

where r is the radius of curvature of the surface in 
meters. The unit of measurement for curvature is the 
reciprocal meter (m-1). 

The curvature of a surface is inversely proportional to 
its radius of curvature, and will increase in magnitude 
as the radius decreases in magnitude. This is 
demonstrated in Figure 2:4 with two different circles. 
The circle with the smallest radius has more curvature, 
and vice versa. 

•θ
θ

θ
1.0 mθ

•
0.5 m

 
FIGURE 2:4 The angle θ represents the angle turned over a 
unit length of arc. The circle with the 0.5-m radius has twice 
as much curvature as the circle with the 1.0-m radius. 

Example 

A spherical surface has a 0.5-m radius of curvature. 
What is the curvature of the surface? 

R =
1

0 5.
 

R = 2  

∴ Curvature is 2 m-1. 

2.6 WAVE PROPAGATION AND VERGENCE 

As described earlier, when light is emitted by a 
luminous source the radiation travels outward in a wave 
fashion. This is similar to a pebble creating ripples in a 
pond. Waves traveling across water are confined to one 
plane, so they travel outward circularly. Light waves 
from a luminous point source, however, travel in every 
direction and form spherical wave fronts. 

A

B

 
FIGURE 2:5 Point A represents a source with wave trains of 
light propagating outward in every direction. The wave front 
is the spherical shell that envelops all of these wave trains at a 
particular distance from the source. Line AB represents a ray 
originating from point A and perpendicular to the wave front 
at point B. 

Each wave front is a spherical shell that envelops all of 
the wave trains at a particular distance from the source. 
Hence, the wave fronts also propagate outward from the 
point source, which serves as their common center of 
curvature. This process is illustrated in Figure 2:5. 

The substance through which these wave fronts travel is 
referred to as the medium. Media can include empty 
space, air, lens materials, etc. For our purposes, we can 
represent these wave fronts with simple rays traveling 
through the media in the direction of the wave trains, as 
shown in Figure 2:5. Moreover, since these rays 
originate at the center of curvature of the wave fronts, 
the rays are also perpendicular to them. When the 
direction of light is represented using rays we call it 
rectilinear propagation. 
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These rays, which are used to represent the geometric 
behavior of the propagation of the wave fronts, diverge 
from such a point source. Furthermore, since the point 
source serves as the center of curvature of these wave 
fronts, the distance from the source to a particular wave 
front serves as the radius of curvature of that wave 
front. As a given wave front becomes more distant from 
the source, its radius of curvature increases in length. 
This, of course, decreases the curvature of the wave 
front. 

We use the term vergence to describe the amount of 
curvature of a given wave front. Unlike regular 
curvature, however, the vergence of a wave front is 
measured in units called diopters—instead of reciprocal 
meters. In addition, we use l to represent the linear 
distance from a particular object or image point. This 
distance serves as the radius of curvature of the wave 
front. In air, the vergence L of the wave front—in 
diopters (abbreviated ‘D’)—is equal to the reciprocal of 
the radius of curvature l of the wave front. 

It is given by the simple relationship 

EQ. 4 L
l

=
1

 

where l is the distance from the source measured in 
meters. Or, more simply, the vergence in air is equal to 
the reciprocal of the radius of the wave front. 

Note: A point source will produce 1 diopter of 
vergence at a distance of 1 meter. 

It should now be obvious that our formula for vergence 
is the same formula utilized to calculate regular 
curvature. Remember that the radius of curvature of a 
given wave front increases in magnitude as the wave 
train gets farther and farther from the point source. This 
results in a decrease in the magnitude of vergence, 
which is the curvature of the wave front. Figure 2:6 
demonstrates this progressive effect. 

The sign (±) of the value of l identifies the type of 
vergence. This is because vergence can be either 
positive or negative: 

• Positive (+) values for vergence will produce 
convergent wave fronts that come to a point.  

• Negative (-) values for vergence will produce 
divergent wave fronts that spread apart (as if from a 
point). 

• Zero (0) values for vergence will produce parallel 
wave fronts, with no vergence. 

In Figure 2:5 and Figure 2:6, the vergence of the light 
rays is away from a point source of light; this is called 
negative vergence, or divergence. Light rays can also 
come together to form an image; this is called positive 
vergence, or convergence. 

•

Radius = -2.0 m = -0.50 D

Point
Source

Radius = -3.0 m = -0.33 D

Radius = -0.5 m = -2.00 D

Radius = -1.0 m = -1.00 D

 
FIGURE 2:6 Wave fronts diverging from a point source eventually become more and more parallel the farther they get from the 
source. The rays representing these wave fronts, which are perpendicular to them, also become increasingly parallel. The vergence 
L approaches 0 as the distance l approaches optical infinity (∞). For practical purposes, this distance is typically considered to be at 
6 m (20 ft) and beyond. The actual vergence past 6 m will be less than 0.17 D. This concept will be discussed in more detail in the 
next section. 
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Wave fronts become progressively flatter as the 
distance from their center of curvature increases. As the 
radius of the wave front becomes infinitely long, the 
vergence approaches zero. The rays used to represent 
these flatter wave fronts also become increasingly 
parallel as they diverge. Rays emanating from point 
sources located beyond optical infinity (∞), which is 
approximately 6 m (or 20 ft), will become effectively 
parallel with each other. That is to say that the wave 
fronts beyond this distance will have an insignificant 
amount of divergence. To illustrate this concept, 
consider Table 2 below which shows the vergence 
values of wave fronts from increasingly distant objects. 

TABLE 2 Vergence of light over various distances 

½ m 1 m 5 m 10 m 1000 m 
2.00 D 1.00 D 0.20 D 0.10 D 0.001 D 

2.7 SIGN CONVENTION 

Before we go any further we need to say a few things 
about the sign convention used in this and most other 
ophthalmic optics textbooks. This sign convention, as 
diagrammed in Figure 2:7, includes (Loshin 8): 

• Light rays are generally depicted as traveling from 
left to right for consistency. 

• The path that light rays travel in one direction, 
including the image and object points, is the same 
path that the light rays would travel coming from the 
opposite direction. Light rays are reversible. 

• The vergence l is typically measured from the wave 
front to an object or image point. 

• Distances measured in the same direction that light 
travels are positive (+). Distances measured in the 
opposite direction are negative (-). For instance, 
measuring l from the wave front of the diverging 
light back to the point source in Figure 2:5 produces 
a negative value. 

Image SpaceObject Space

••

- +

Direction of Light

0

CONVERGINGDIVERGING

 
FIGURE 2:7 Optical sign convention. 

Rays of light originate—or appear to originate—from 
every minute point of a source referred to as the object 
of the lens. After passing through the lens, these rays 

are converged to, or diverged from, either a real or 
virtual point focus. (This process will be described in 
detail in Section 4.1.) The sum of these points combine 
to form either a real or virtual image of the original 
object, as illustrated in Figure 2:8. Every object point is 
associated with an image point; therefore, these points 
are called conjugate points. 

Image DistanceObject Distance

Real
Object

Image

Real,

Plus Lens

Inverted

 
FIGURE 2:8 Conjugate object and image points. This plus 
lens has formed a real image of a real object. The image is 
actually inverted (rotated 180°), relative to the original object. 
Real images can be focused upon a screen; virtual images 
cannot. 

The distance of an object from the lens or surface is 
referred to simply as the object distance l. Similarly, 
the distance of the resultant image of the object from the 
lens or surface is referred to as the image distance l'. 
Remember that the image and object points are 
conjugate. 

We also have some sign convention rules to follow for 
objects and images, as shown in Figure 2:9: 

• Objects located in the object space (which are to the 
left of the lens for our purposes) are real. Objects 
located in the image space (to the right of the lens) 
are virtual. 

• Images located in the image space (which are to the 
right of the lens for our purposes) are real. Images 
located in the object space (to left of the lens) are 
virtual. 

Example 

Light is diverging (negative) from an object located 2 m 
away. What is the vergence of the wave front? 

L
-

=
1
2

 

L - .= 050  

∴ Vergence is -0.50 D (divergence) 
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O
O'

OO'

O O'

A

B

C  
FIGURE 2:9 Common object and image types. A) A real 
image O' formed by a plus lens and a real object O; B) A real 
image O' formed by a plus lens and a virtual object O; and C) 
A virtual image O' formed by a minus lens and a real object 
O. 

Example 

A wave front is converging (positive) upon an image 
point located 1/3 m away. What is the vergence of the 
wave front? 

L =
      1

1
3

 

L = 3 00.  

∴ Vergence is 3.00 D (convergence) 
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3. Refraction, Reflection, and Prism 
When light strikes an object, it may be transmitted 
(allowed to pass through), absorbed and converted into 
heat, and/or reflected off of the object. Each of us 
experiences these phenomena every day. We will look 
closely at the process of refraction, and then briefly 
consider reflection. Both play integral roles in the 
interaction between light and optical surfaces. 

3.1 REFRACTION 

When light travels from one medium into another with a 
different index of refraction, the velocity of the light 
will change. When going from a lower index medium to 
a higher index medium that is more dense, such as from 
air to a piece of glass, the velocity is reduced. If the rays 
of light are incident upon the glass surface 
perpendicularly, or normal to the surface (at a 90° angle 
to the surface), the rays will pass through without 
changing direction. 

When rays of light strike a differing medium obliquely, 
or at an angle, they are refracted, or bent, at the 
interface between the two media. When going from a 
lower-index medium to a higher-index medium that is 
more dense, such as from air to a piece of glass, the rays 
of light are shifted toward the normal, which is an 
imaginary line of reference perpendicular to the surface 
at the point of incidence. This process can be better 
visualized by considering the wave form of light, as 
shown in Figure 3:1. 

Air Glass

1

2 A

B

Air

NORMAL

NORMAL

 
FIGURE 3:1 The wave fronts of wave train 1 enter the glass 
medium perpendicularly, and are slowed down uniformly. 
There is no change in direction. The wave fronts of wave train 
2 enter the glass obliquely. Side A of the approaching wave 
fronts strikes the glass before side B, causing side A to slow 
first. As a result, the wave train is refracted, or bent, as it 
enters the medium. 

When going from a higher index medium to a lower 
index medium that is less dense, such as from a piece of 
glass to air, the reverse occurs and the rays of light are 
shifted away from the normal of the surface. 

Snell’s law of refraction is fundamental to the study of 
optics. It mathematically establishes how much rays of 
light will be deviated from their original path as they 
pass through various media (Freeman 18):*  

EQ. 5 n i n i⋅ = ′ ⋅ ′sin sin  

Snell’s law tells us that the product of the sine of the 
angle of incidence i, and the refractive index n of the 
medium containing this angle, is equal to the product of 
the sine of the angle of refraction i', and the refractive 
index n' of the medium containing this angle. It also 
states that the angles of incidence and refraction lie in 
one plane. 

Both of the angle of incidence and the angle of 
refraction are measured from the normal. A third angle, 
the angle of deviation θ, lies between the refracted ray 
and the direction of its original path. This angle 
represents the shift of the ray from its original path. 
Hence, the angle of deviation is equal to the difference 
between the angles of incidence and refraction. Snell’s 
law is illustrated in Figure 3:2 for another parallel block 
of glass. From the formula, we can also conclude that: 

• If n > n' then i < i' 
• If n < n' then i > i' 

Air AirMedium

NORMAL

NORMAL

n n'

i'
i

θ

n

 
FIGURE 3:2 Snell’s law of refraction. Note that θ = i - i'. 
Since the sides of the glass medium are parallel, the ray 
emerges parallel to its original path (but displaced). 

If both sides of the block of glass (or higher index 
medium) are completely parallel to each other, as is the 
case in both Figure 3:1 and Figure 3:2, the rays will exit 
traveling parallel with, yet slightly displaced from, their 
original direction. The amount of displacement will 
depend upon both the index of refraction and the 
thickness of the medium. 

 

 

                                                           
* Snell’s law can be proven using either Huygens’ 
principle or Fermat’s principle of least time. 
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Example 

A ray of light strikes a lens material with a 1.523 
refractive index, at a 30° angle of incidence in air 
(which has a refractive index of 1). What is the angle of 
refraction? 

1 30 1523⋅ °= ⋅ ′sin sin. i  

sin ′ =i .0 3283  

′ = °i .1917  

∴ Angle of refraction is 19.17º. 

3.2 REFLECTION 

We will only address the phenomenon of reflection 
briefly in this workbook. It was mentioned earlier that 
we see most objects simply because light “bounces off” 
them. This process is known as reflection. Reflection 
can be described with a simple relationship, as 
illustrated in Figure 3:3, known as the law of reflection. 
This law simply states that the angle of incidence i is 
equal to the angle of reflection r (Freeman 13): 

EQ. 6 i r=  

i r

NORMAL

Mirror  
FIGURE 3:3 Reflection of a light ray. 

As with refraction, these angles are both measured from 
the normal; the imaginary line of reference 
perpendicular to the surface at the point of incidence. 
Imagine a rubber ball bouncing off a wall; the ball will 
bounce off at the same angle at which it strikes. The 
same concept applies to the reflection of light. 

Reflection occurs when light is incident upon the 
boundary or interface between two different media 
(e.g., air and water). Part of the incident light travels 
back into the first medium. The amount and color of 
light that is reflected back into the first medium depends 
upon the nature of the materials, as well as the angle of 
incidence. There are two principal types of reflections 
that can occur. When rays of light strike a rough 
surface, like concrete, the uneven surface reflects, or 
scatters, the light in every direction. This is known as 
diffuse reflection. When rays of light strike a smooth 
and shiny surface, like glass, the surface reflects an 
image of the source. This is known as specular 
reflection. Both types of reflection are illustrated in 
Figure 3:4. (Keating 6). 

Diffuse Specular  
FIGURE 3:4 Rough versus smooth surface reflection. 

All transparent materials reflect a certain amount of 
light. The fraction of incident light reflected from a 
surface is referred to as the reflectance ρ. So how much 
light is reflected? For light striking a lens 
perpendicularly in air, the reflectance ρ is given by 
Fresnel’s formula: 

EQ. 7 ρ =
−
+

⎛
⎝⎜

⎞
⎠⎟

n
n

1
1

2

  

where n is the refractive index of the material. To 
express the reflectance ρ as a percentage, simply 
multiply by 100. 

Consequently, as the index of refraction of the lens 
material increases the amount of light reflected 
increases. 

Example 

Light is incident upon a transparent medium with an 
index of refraction of 1.500. What is the reflectance? 

ρ =
−
+

⎛
⎝⎜

⎞
⎠⎟

1500 1
1500 1

2.
.

 

ρ =
⎛
⎝⎜

⎞
⎠⎟

05
2 5

2.
.

 

ρ = 0 04.  

∴ Reflectance is 0.04 (or 4%). 

Each surface of common glass and plastic lens materials 
reflects at least 4 to 5% of the light incident upon the 
lens. Between both surfaces, that is a total reflectance of 
at least 8%. Conversely, a completely clear lens (with 
little or no absorption) can only transmit 92% of the 
light passing through it. Thin coatings can be applied to 
a lens surface to reduce this reflectance to almost 
nothing—thereby increasing the transmittance of the 
lens. 

3.3 PRISM 

We can now apply the concept of refraction to elements 
designed to manipulate light. A prism is a refracting 
medium bound by non-parallel sides. Like a triangle, 
the thickest edge of the prism is referred to as the base, 
while the thinnest edge of the prism is referred to as the 
apex. This wedge-shaped element changes the direction 
of light without necessarily changing its vergence. 
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When light passes through a prism, the rays are 
deviated toward the base. This causes the image to 
appear displaced towards the apex, as illustrated in 
Figure 3:5. 

E

E

Base

Apex

 
FIGURE 3:5 The ray of light passing through the prism is 
refracted towards the base, causing the image to appear 
displaced towards the apex. 

Developing an understanding of the action of a prism 
upon light is essential, in order to comprehend the 
process of refraction through ophthalmic lenses. Figure 
3:6 demonstrates the apparent displacement of an 
image, as seen through the prism. 

E L L
H O

 
FIGURE 3:6 Image seen through a prism. 

Before we continue, a few additional terms and 
concepts need to be defined. The angle of deviation is 
the total displacement of a ray of light passing through 
the prism from its original direction. The apical angle is 
the angle between the two faces of a prism (towards the 
apex). The deviation produced by an ophthalmic prism 
is traditionally measured in units called prism diopters 
(abbreviated ‘Δ’). 

The prismatic deviation Δ of an image, in prism 
diopters, is simply equal to 

EQ. 8 Δ =
y
x

CM

M
 

where yCM is the image displacement, in centimeters, by 
the prism over a given distance xM, in meters. 

Note: 1 prism diopter represents a displacement of 1 
centimeter over a distance of 1 meter. *  

                                                           
* Strictly speaking, however, the prism diopter is not a 
true unit of angular deviation since its deviation 
changes with greater angles. For instance, 1Δ is equal to 
0.57°, while 40Δ—which is 40 × 1Δ—is equal to 21.80°. 
However, this is only 38 × 0.57°. 

The prism diopter is illustrated in Figure 3:7. Moreover, 
the prism diopter can be defined more generally as a 
deviation of 1 arbitrary unit over a distance of 100 such 
units. For instance, 1Δ also equals a displacement of 1 
inch over a distance of 100 inches. 

1 cm

M
x = 1 m

CMyΔ1

 
FIGURE 3:7 The prism diopter: 1Δ deviates light 1 cm over a 
distance of 1 m (or 1 unit over 100 units). 

Example 

A prism deviates a ray of light 2 cm at a distance of 4 
m. What is its prismatic deviation? 

Δ =
2
4

 

Δ =
1
2

 

∴ Prismatic deviation is ½Δ (0.5Δ). 

The prismatic deviation θ can also be expressed in 
degrees by converting it with the formula 

EQ. 9 θ =
⎛
⎝⎜

⎞
⎠⎟

−tan 1

100
Δ

 

For small angles, this means that 1° of deviation will be 
nearly equal to 1.75Δ of deviation. 

Example 

A certain prism has 6 prism diopters of power. What is 
its prismatic deviation when expressed in degrees? 

θ =
⎛
⎝⎜

⎞
⎠⎟

−tan 1 6
100

 

θ = °3 43.  

∴ Prismatic deviation is 3.43°. 
If we know the apical angle of a thin prism (which has a 
small apical angle) we can also determine its 
approximate prismatic deviation. We will employ a 
small angle approximation of Eq. 5, Snell’s law of 
refraction (Fannin & Grosvenor 82): 

n i n i⋅ ≈ ⋅sin  

Essentially, the sine of a small angle is approximately 
equal to the angle itself, when the angle is expressed in 
radians. We will go systematically through the process 
of showing a relationship between the apical angle a of 
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prism, its index of refraction n, and the prismatic 
deviation θ it produces, in degrees. If you find the math 
a bit tedious, you can skip over the derivation. Keep in 
mind, though, that it will give you some insight into 
how many of the other formulas that you will encounter 
are derived. 

If we assume that the rays of light strike the first surface 
of the prism in Figure 3:8 perpendicularly, we can 
ignore the refraction of light at this surface.* We are 
now only concerned with the refraction of light at the 
second surface, and the angle of incidence i at this 
surface, to determine the angle of prismatic deviation θ. 

i'θ

a

i

n n'n'
NORMAL

 
FIGURE 3:8 Relationship between deviation and the apical 
angle of a prism. Since the normal is perpendicular to the 
hypotenuse of the triangle (prism), angle i = a. 

We can now use the following relationships to 
determine the angle of deviation θ: Recall that the angle 
of deviation θ is the difference between the angles of 
refraction i and incidence i': 

θ = ′ −i i  

Similarly, 

′ = +i iθ  

Now consider that the original ray was perpendicular to 
the first surface of the prism. Further, the angle of 
incidence i is measured from the normal to the second 
surface (which is perpendicular to it). Consequently, the 
apical angle a is equal to the angle of incidence i: 

a i=  

We can now also substitute our earlier relationships for 
i and i' into the approximation of Snell’s law of 
refraction to give us 

n i n i⋅ ≈ ′ ⋅ ′  

Moreover, n' = 1 (since n' is air). We will now 
substitute angle a for angle i into the expression. 

n a i⋅ = ′1  

                                                           
* In reality, the angle of incidence at the first surface 
will affect the total amount of deviation. However, this 
approximation will be suitable for our purposes. 

Next, we will plug our earlier relationship for angle i' 
back into the expression above (once again substituting 
a for i): 

n a a⋅ = +θ  

Finally, after rearranging and factoring out a, the 
prismatic deviation θ—in degrees—is given by: 

EQ. 10 ( )θ = −a n 1  

Keep in mind that this approximation holds for thin 
prisms only, and will quickly lose accuracy as the apical 
angle approaches and exceeds 10°. 

Example 

A prism has an apical angle of 10° and a refractive 
index of 1.500. What is the prismatic deviation 
produced by the prism in degrees? 

( )θ = −10 1500 1.  

θ = °5  

∴ Prismatic deviation is 5°. 

3.4 REDUCED DISTANCE 

You have probably noticed at one time or another that 
objects in water appear to be closer than they actually 
are. This apparent image displacement is just another 
consequence of refraction. This phenomenon is 
illustrated in Figure 3:9, where a fish is located at a 
distance t below the surface of the water. The reduced 
distance—or equivalent thickness—to the fish is the 
distance d, and is equal to (Keating 137) 

d
n

t
n′

=  

Since the first medium is generally air (n' = 1), we will 
ignore this value (since d / 1 = d) and use 

EQ. 11 d
t
n

=  

i'

i
t

dn
n'

n > n'
i < 'i

 
FIGURE 3:9 The fish is located at a distance t from the 
surface of the water. It appears to be located at the reduced 
distance d, however, because of the refraction of light. 
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We refer to the apparent depth of the fish as ‘reduced,’ 
simply because the distance to the image of the fish 
appears shorter. We may also call this distance 
‘equivalent,’ because this is the distance from the fish in 
air that would produce the same vergence as that 
produced by the fish in water at the original distance. 
We will return to the concept of reduced distance when 
discussing thick lenses. 

It should be apparent from Figure 3:9 that the refraction 
of light at the interface between the water and air 
effectively changes the curvature of the wave front 
leaving the surface of the water. In the earlier analysis 
of vergence in Section 2.6, the vergence of light was 
described in air. Our discussion of reduced distance, 
however, has reiterated the fact that light propagates 
differently in different media, because of changes in its 
velocity (i.e. refractive index). 

A more general description of vergence, that takes into 
account the effects of the medium, is given by using the 
reciprocal of the reduced distance l / n—as opposed to 
the physical distance l. Our new formula, for any 
medium, is 

L n
l

=
1

 

EQ. 12 L
n
l

=  

where l is the physical distance from an object or image 
point measured in meters. 

Of course, when air is the medium, n = 1; returning us 
back to the original vergence formula: 

L
l

=
1

 

Recall that vergence is measured in diopters. 

 

 

Example 

A person stands above the water looking at an object 
located 1 m below the surface of a pond (n = 1.333). 
How far from the surface does the object appear to be 
located (what is the reduced distance)? 

d =
1

1 333.
 

d = 0 75.  

∴ Reduced distance is 0.75 m. 
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4. Refractive Power and Lenses 
One of the primary applications of an ophthalmic lens is 
to change the vergence of incident light, typically to 
compensate for a refractive anomaly of the eye. The 
ability of a lens to change the vergence of light is 
referred to as focal power. We begin our discussion of 
focal power by first analyzing curved refracting 
surfaces, since a lens is essentially a lens material 
bounded by two refracting surfaces. 

So why employ curved refracting surfaces? Consider 
Figure 4:1 and Figure 4:2. Prisms, placed base-to-base, 
are used to bring light rays together (similar to the 
action of a convex surface or lens). In the first example, 
using only two prisms, the rays are not all brought to a 
single point focus. In the second example, using a 
separate prism for each ray, we are able to cause them 
all to intersect. Obviously, it would take an infinite 
number of prisms to bring every individual ray to a 
single focus. 

1

2

3

 
FIGURE 4:1 Rays 1, 2, and 3 strike the prisms at 
progressively farther distances from the central section. Each 
ray is deviated by the same amount, so they do not combine to 
a single point. 

1

2

3

 
FIGURE 4:2 Rays 1, 2, and 3 strike the prisms at 
progressively farther distances from the central section. These 
rays require stronger and stronger prisms (with increasing 
apical angles) to deviate the light to a single point. 

This is exactly what curved surfaces allow us to do, as 
shown in Figure 4:3. These diagrams can also be 
redrawn with prisms apex-to-apex, to simulate the 
divergence of light produced by a minus lens. 

 
FIGURE 4:3 Each individual ray is brought to a single point 
focus using curved refracting surfaces (if we neglect 
aberrations). The slope of a curved refracting surface naturally 
increases away from the central zone, which is flat. This 
changing slope acts like a continuously increasing apical 
angle, or an infinite series of prisms, as shown with this plus 
lens. 

4.1 CURVED REFRACTING SURFACES 

Lens surfaces are often referred to as surfaces of 
revolution, since they can be described by revolving a 
plane geometric shape—like a circle or an arc—about 
an axis of revolution that lies within its plane. This 
creates a three-dimensional surface that we can measure 
in terms of its curvature. The most common example of 
these surfaces is the sphere, which is produced when a 
circle is rotated about an axis that passes through its 
center, as depicted in Figure 4:4. A typical ‘spherical’ 
ophthalmic lens surface is essentially a section cut from 
such a sphere. 

AXIS OF
REVOLUTION

•

 
FIGURE 4:4 A lens surface is cut from a section of this 
spherical surface of revolution. Any point on the surface of a 
sphere is equidistant from its center of curvature. 

A lens surface is simply an interface between two media 
with different indices of refraction. This interface is 
between air (with a refractive index of 1) and the lens 
material. The common curvature of this interface, which 
is determined by the radius of curvature r, and the 
difference in refractive index between the two media 
determine how light is affected (or ‘refracted’) as it 
passes from one medium to the other. For our purposes, 
we will use n to represent the medium to the left of this 
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interface in object space, and n' to represent the medium 
to the right in image space. 

The ability of a particular refracting surface to change 
the vergence of incident light is referred to as its 
surface power. If we know the distance of an object 
from the surface, and its surface power, we can 
determine the distance at which the image of the object 
will be formed. 

Recall that the object distance l is the distance of an 
object from the surface, while the image distance l' is 
the distance of the resultant image from the surface. 
Now consider Figure 4:5, where diverging rays of light 
from the real object point L are intercepted by the lens 
surface. The object distance from the lens surface is l. 
Once again, Snell’s law of refraction can be simplified 
to develop a relationship between the refractive indices 
of the two media (n and  n') surrounding the surface, its 
radius of curvature r, and the image distance l' from the 
surface that rays of light are brought to a focus at point 
L' after refraction. This formula, known as the 
conjugate foci formula for lens surfaces, is given by*  

EQ. 13 
′
′

=
′ −

+
n
l

n n
r

n
l

 

where n is the refractive index of the medium to the left 
of the surface in object space, n' in the index of the 
medium to the right in image space, l is this image 
distance, l' is the object distance, and r is the radius of 
curvature of the surface (or interface). All of these 
distances are measured in meters. 

At this point, we can substitute ‘dioptric equivalents’ 
for the three terms of the conjugate foci formula. For 
instance, the term on the left side of the equation, n' / l', 
represents the image vergence L' in diopters. 
(Remember our preceding discussion on vergence and 
reduced distance.) The last term on the right side of the 
equation, n / l, is the object vergence L in diopters. 

This gives us 

L
n
l

=   and  ′ =
′
′

L
n
l

 

as the dioptric equivalents. 

                                                           
* The complete derivation for this formula can be found 
in Appendix B. 

n n'
1

2

•

l

L
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FIGURE 4:5 Refraction of light rays by a spherical surface 
(assuming n' > n). Rays 1 and 2 are diverging from a real 
object point at L, before striking the lens surface. A) Ray 1 
strikes the surface perpendicularly, and is not refracted. Ray 2 
strikes the surface at the height h. B) The normal to the 
surface at the height of ray 2 has been drawn through the 
center of curvature at C. Ray 2, which is parallel to ray 1, 
strikes the surface at an angle of incidence i. After refraction 
by the surface, ray 2 is at an angle i' to the normal, and is 
deflected by the angle of deviation d. C) Finally, ray 2 
intersects ray 1 to form a real image at point L'. Note that L 
and L' are conjugate points. 

The first term on the right side of the equation, (n' - n) / 
r, is the surface power FS in diopters. This quantifies 
the ability of the lens surface to change the vergence of 
incident light. Hence, the basic surface power formula 
is 

EQ. 14 F
n n

rS =
′ −
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Substituting these ‘dioptric equivalents’ back into the 
conjugate foci formula (Eq. 13) gives us a much more 
pleasant-looking equation: 

EQ. 15 ′ = +L F LS  

This variation of the formula tells us that the image 
vergence L' produced by a lens surface is simply equal 
to the sum of the surface power FS and the object 
vergence L. Or, more simply, the image vergence is the 
net result of the effect that the surface power has on the 
object vergence. 

You should commit this formula to memory, since it is 
fundamental to many of the equations that follow. 

When referring specifically to lens surfaces in air, we 
often distinguish between the following three basic 
types of surface curvatures and power, which are all 
illustrated in Figure 4:6: 

• Convex curves (think of the outside of a bowl) 
produce a positive (+) surface power, and add 
convergence to incident rays of light. 

• Concave curves (inside of a bowl) produce a 
negative (-) surface power, and add divergence to 
incident rays of light. 

• Plano curves (flat) produce zero surface power (0), 
and do not change the vergence of incident rays of 
light. (The radius of curvature of this surface is 
infinitely long.) 

A B C  
FIGURE 4:6 Lens surfaces. A) A convex curve; B) A concave 
curve; and C) A plano curve. 

It is also helpful to keep in mind that we don’t 
necessarily have to substitute all of the dioptric 
equivalents into the conjugate foci formula. For 
instance, equations like the ones below are acceptable: 

′
′

= +
n
l

F
n
lS  

Or, 

′
′

= +
n
l

F LS  

Example 

Light from an object 50 cm away (0.5 m) strikes a 
convex refracting surface with a refractive index of 
1.500 and a radius of curvature of 12.5 cm (0.125 m). 
How far from the surface is the image formed? 

First, we will determine the surface power, given a 
material index with a refractive index of 1.500 
surrounded by air with a refractive index of 1: 

F
.

.S =
−1500 100

0125
.

 

FS = 4 00.  

∴ Surface power is +4.00 D. 

Next, we will determine the object vergence using 
Figure 4:7. Since the light is diverging from the object 
towards the surface, the object distance is negative 
(using our sign convention from Section 2.6). Since the 
object is in air, n = 1: 

L =
−

1
05.

 

L = −2 00.  

n = 1 •

l' = ? = 0.75 m

L'•

l = -0.5 m

L

= +4.00 DF
S

n' = 1.500

 
FIGURE 4:7 Conjugate foci for a +4.00 D surface. The object 
distance is -0.5 m and the image distance is 0.75 m. 

Now we can substitute into our conjugate foci formula -
2.00 D for the object vergence, 1.500 for the refractive 
index n' of the lens material, and +4.00 D for the 
surface power. The only unknown variable now is the 
image distance l', 

( )1500
4 00 2 00

.
. .

′
= + + −

l
 

′ =
+

l
1500

2 00
.

.
 

′ =l 0 75.  

∴ Image distance is +0.75 D. 
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Example 

A lens material with a refractive index of 1.500 is 
bound by a front, concave (negative radius) refracting 
surface with a -100 mm (-0.100 m) radius of curvature. 
What is its surface power? 

F
.

S =
−

−
1500 1

0100.
 

F .S = −500  

∴ Surface power is -5.00 D. 

The curvature of a surface is inversely proportional to 
its radius of curvature; as the radius increases, the 
curvature decreases. Hence, the surface power is 
directly proportional to both the amount of curvature 
and the refractive index of the lens material. An 
increase in either the magnitude of the curvature, or the 
refractive index, will result in an increase in the 
magnitude of the surface power. 

There are certain conjugate points that have special 
applications in ophthalmic optics. The object point that 
forms an image located at optical infinity (∞) is referred 
to as the primary focal point F of the surface. In 
addition, the object distance from the primary focal 
point to the surface is referred to as the primary focal 
length. To determine the primary focal length f, set the 
image distance to infinity: 

′
∞

= +
n

F
n
fS  

The n' / ∞ term is essentially equal to 0, so it can be 
dropped from the equation. (Any number divided by 
infinity ∞ approaches 0.) Hence, the primary focal 
length f of the surface is related to its surface power by 

EQ. 16 F
n
fS = −  

where FS is the surface power and f is the primary focal 
length in meters. 

The image point formed by an object located at optical 
infinity (∞) is referred to as the secondary focal point 
F' of the surface. The image distance from the 
secondary focal point to the surface is referred to as the 
secondary focal length f'.  

′
′

= +
∞

n
f

F
n

S  

Once again, the n / ∞ term is dropped. 

Hence, the secondary focal length f' is related to its 
surface power by 

EQ. 17 F
n
fS =
′
′

 

where FS is the surface power and f' is the secondary 
focal length in meters. 

The relationship between the primary and secondary 
focal points and lengths for convex and concave lens 
surfaces are illustrated in Figure 4:8 and Figure 4:9. 

n n'

f

•F ∞

A
 

n n'

f'

•F'∞

B
 

FIGURE 4:8 Refraction at a spherical, convex surface (n' > 
n). A) The primary focal point F of a surface is the object 
location required to produce an image at infinity. B) The 
secondary focal point F' of a surface is the image location 
produced by an object at infinity. 

For a concave surface to have the image at infinity, 
incoming rays must be convergent. The primary focal 
point is the location where the object would have been 
formed if the lens had not intercepted the rays and 
focused them at infinity. This is a virtual object. When 
an object is at infinity and parallel rays hit the surface, 
in the case of a concave surface the refracted rays are 
diverging. The point from which they appear to diverge 
is the secondary focal point. This is a virtual image. 
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n n'

f

•F ∞

A
 

n n'

f'

•F'∞

B
 

FIGURE 4:9 Refraction at a concave surface. A) The primary 
focal point F. B) The secondary focal foint F'. 

4.2 OPTICAL AXIS 

Recall that a lens is essentially a refractive material 
bounded by front and back surfaces. Moreover, these 
optical surfaces may be convex, concave, or plano in 
curvature—allowing a wide variety of surface 
combinations. We now know that each surface has a 
center of curvature (at least one). Also recall that any 
ray of light passing through the center of curvature of a 
spherical surface is normal (or perpendicular) to that 
surface. Since the ray is normal to the surface, it will 
not be refracted. 

Before we discuss lenses any further, we should address 
the term optical axis. When discussing prism, it is 
important to understand the position or location of the 
optical axis. The optical axis is an imaginary line of 
reference passing through both centers of curvature (C1 
and C2) of a lens. Since a line passing through the 
center of curvature of a surface is perpendicular to that 
surface, the optical axis is normal to both the front and 
back surfaces. Moreover, the front and back surfaces 
are exactly parallel with each other at the two points 
intersected by the optical axis. The optical axes of some 
common lens styles are shown in Figure 4:10. 

Some lenses do not have a natural optical axis. For 
instance, lenses with concentric surfaces that share a 
common center of curvature do not have a single optical 
axis but any ray perpendicular to the first surface is also 
perpendicular to the second. 

C1

C2OPTICAL
AXIS

A  

C1

C2OPTICAL
AXIS

B  

C1

C2 OPTICAL
AXIS

C  

C1

OPTICAL
AXIS

D

C2

 
FIGURE 4:10 The optical axis of a lens is the line passing 
through the centers of curvature of the front and back surfaces 
(C1 and C2). The lens surfaces are parallel with each other at 
these points. A) Optical axis of lens with two convex surfaces, 
B) a lens with two concave surfaces, C) a lens with a convex 
and a concave surface, and D) another lens with a convex and 
a concave surface. 

 



Carl Zeiss Vision  Introduction to Ophthalmic Optics 

 20

4.3 THIN LENS POWER 

Now that we have looked at individual refracting 
surfaces, we can look at how these surfaces work 
together to form a lens. Many of the principles 
developed for surface power are equally applicable to 
lenses. The ability of a lens to change the vergence of 
incident light is known as focal power. We will first 
consider ‘thin’ lenses whose center thickness is small 
and relatively inconsequential. When the two surfaces 
of such a lens are virtually in contact at the optical axis, 
we refer to the lens as a thin lens. Once the vergence of 
incident light is affected by the power of the first 
surface, it is immediately subjected to the effects of the 
second surface. Consequently, we can ignore the effects 
of thickness for a ‘thin’ lens. Recall that each surface 
power is given by (Eq. 14) 

F
n n

rS =
′ −

 

For the front refracting surface F1 of a lens, which has 
air as the medium to the left, the numerator will be n’ - 
1; where n’ is the refractive index of the lens material. 
For the back surface F2, which has air as the medium to 
the right, the numerator will be 1 - n; where n is the 
refractive index of the lens material. For our purposes, 
we will drop the primed (') value of n and just use n as 
the refractive index of the lens material for both the 
front and back surfaces: 

F
n

r1

1
=

−
  and  F

n
r2

1
=

−
 

where F1 is the surface power of the front curve, and F2 
is the surface power of the back curve. 

Theoretically, there is no separation between the 
surfaces of a thin lens. The change in vergence imparted 
by the first surface is at once followed by a change in 
vergence at the second surface. In reality, all lenses 
have some center thickness—particularly plus lenses. 
We will look at the effects of center thickness in the 
next section. Until then, we can make a slight 
modification to our conjugate foci formula (Eq. 15) to 
allow for the effects of both the front and back surfaces 
(F1 and F2): 

EQ. 18 ′ = + +L F F L1 2  

The combination of the first two terms on the right side 
of the equation, F1 and F2, is referred to as the focal 
power of the lens in diopters. Hence, the focal power F 
of a thin lens can be expressed as 

EQ. 19 F F F= +1 2  

Or, more simply, the focal power of a thin lens is equal 
to the algebraic addition of the front F1 and back F2 
surface powers. This simple formula is known as the 

lensmaker’s formula. Furthermore, when the lens is in 
air, this formula is equivalent to 

EQ. 20 F
n

r
n

r
=

−
+

−1 1

1 2

 

We should now address the three fundamental types of 
lenses and focal power (there are additional lens types 
that will be considered later): 

• Plus, positive, or convex lenses produce a positive 
(+) focal power, and add convergence to incident 
rays of light. 

• Minus, negative, or concave lenses produce a 
negative (-) focal power, and divergence to incident 
rays of light. 

• Plano lenses produce zero focal power (0), and do 
not change the vergence of incident rays of light. 

Example 

A lens has a +4.00 D front curve and a -6.00 D back 
curve. What is its focal power? 

( )F .= + + −4 00 6 00.  

F = −2 00.  

∴ Focal power is -2.00 D. 

In the example above, the front surface produced +4.00 
D of convergence, while the back curve produced -6.00 
D of divergence. This left a net power of +4.00 + (-
6.00) = -2.00 D of divergence. 

We can now substitute the focal power F into our 
conjugate foci formula for thin lenses (Eq. 18): 

EQ. 21 ′ = +L F L  

Note that this formula is the same as Eq. 18, with F 
substituted for F1 and F2, and describes the ability of a 
lens to change the vergence of incident light—not just a 
single surface. For our purposes, the lens will always be 
surrounded by air (n = 1) which means that object and 
image vergences (L and L') are equal to 

L
l

=
1

  and  ′ =
′

L
l
1

 

Or, more simply, the object vergence L of the light 
entering the lens is equal to the reciprocal of the object 
distance l, which is the distance of the object from the 
lens. 

Similarly, the image vergence L' of the light exiting the 
lens is equal to the reciprocal of the image distance l’, 
which is the distance of the image from the lens. 

This allows us to simplify the conjugate foci formula 
for thin lenses: 
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1 1
′

= +
l

F
l

 

where l' is the image distance from the lens in meters, F 
is the focal power in diopters, and l is the object 
distance to the lens in meters. 

All measurements of object and image distances for a 
thin lens are taken from a theoretical reference plane at 
the center of the lens (since both surfaces are 
theoretically in contact at this point for a thin lens). An 
example of the conjugate image and object points for a 
+4.50 D lens is illustrated in Figure 4:11. 

Example 

An object is placed 40 cm (0.4 m) in front (negative 
vergence or divergence) of a +4.50 D lens. What is the 
final image distance? 

1 1
0 4

4 50
′

=
−

+
l .

.  

1
2 00

′
=

l
.  

′ =l 05.  

∴ Image distance is +0.5 m (50 cm). 

••
L'L

Real

Point
Image
Real

Point
Object

l' = ? = 0.5 ml = -0.4 m
Image DistanceObject Distance

SINGLE PLANE OF SURFACES

 
FIGURE 4:11 Conjugate foci for an infinitely thin +4.50 D 
lens. The length l is the object distance, and l' is the image 
distance. These distances are measured from a theoretical 
reference plane centered within the lens. 

As with single surfaces lenses have certain important 
conjugate points. The object point along the optical axis 
that forms an image located at optical infinity (∞) is 
referred to as the primary focal point F of the lens. In 
addition, the object distance from the primary focal 
point to the lens is referred to as the primary focal 
length. 

To determine the primary focal length f, set the image 
distance to infinity: 

1 1
∞

= +F
f

 

Again, the 1 / ∞ term is essentially equal to 0, and is 
dropped. Hence, the primary focal length f of the lens is 
related to its focal power by 

EQ. 22 F
f

= −
1

 

where F is the focal power and f is the primary focal 
length in meters. 

The image point along the optical axis that is formed by 
an object located at optical infinity (∞) is referred to as 
the secondary focal point F' of the lens. The image 
distance from the secondary focal point to the lens is 
referred to as the secondary focal length f'.  

1 1
′

= +
∞f

F  

The 1 / ∞ term is dropped. Hence, the secondary focal 
length f' of the lens is related to its focal power by 

EQ. 23 F
f

=
′

1
 

where F is the focal power and f' is the secondary focal 
length in meters. 

Or, more simply, the secondary focal length f' of a lens 
is equal to the reciprocal of its focal power F. 
Moreover, for thin lenses surrounded by air, the 
primary focal length is equal in magnitude to, yet in the 
opposite direction of, the secondary focal length: 

− = ′f f  

Example 

A lens has a secondary focal length of 25 cm (0.25 m). 
What is its focal power? 

F =
1

0 25.
 

F = +4 00.  

∴ Focal power is +4.00 D. 

In ophthalmic optics, we are particularly interested in 
the secondary focal length of the lens. You should now 
realize that the reciprocal of the focal power provides 
the image distance from the lens at which light from an 
object at infinity will either converge to a real point 
focus for plus lenses, or appear to diverge from a virtual 
point focus for minus lenses—after refraction through 
the lens. The image plane that contains all of the image 
points from such an object is referred to as the 
secondary focal plane; this plane is positioned at the 
secondary focal point and is perpendicular to the optical 
axis. 
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The secondary focal lengths, planes, and points for both 
a plus lens and a minus lens are illustrated in Figure 
4:12 and Figure 4:13. 

Focal length

DISTANT
OBJECT

∞

Focal point
F’

f’
 

FIGURE 4:12 Cross-sectional view shows parallel rays of 
light, from a real object at infinity (∞), converging to form a 
real point focus at the secondary focal point F' of a plus lens. 
A real image is created. 

DISTANT
OBJECT

∞

Focal point
F’

Focal length
f’

 
FIGURE 4:13 Cross-sectional view shows parallel rays of 
light, from a real object at infinity (∞), diverging as if from a 
virtual point focus located at the primary focal point F' of a 
minus lens. A virtual image is created. 

To reiterate, the secondary focal point is the location—
along the optical axis—of the plane in which the image 
points from an object at infinity will lie. Essentially, the 
relationship between focal power and focal length is 
another application of the vergence concept. The 
secondary focal point serves as the center of curvature 
of the wave fronts that approach the image point, and 
the secondary focal length is equal to the radius of 
curvature of the image wave front at the plane of the 
lens. Hence, focal power is simply the vergence of the 
wave front, from the secondary focal point to the plane 
of the lens. 

This vergence approach is demonstrated in Figure 4:14 
and Figure 4:15. 

f'
 Secondary Focal Length

•
F'

 
FIGURE 4:14 The action of a plus lens upon light can also be 
described by wave fronts converging to point F'. 

•
F'

f'
Secondary Focal Length  

FIGURE 4:15 The action of a minus lens upon light can also 
be described by wave fronts diverging as if from point F'. 

The primary focal lengths and points for both a plus 
lens and a minus lens are illustrated in Figure 4:16 and 
Figure 4:17. The secondary focal lengths and points are 
also shown for comparison. 

f'
 Secondary Focal Length

•F'•

f
Primary Focal Length

F

Real Image
at Infinity

OPTICAL AXIS

∞

 
FIGURE 4:16 Cross-sectional view shows rays of light 
diverging from a real object, positioned at the primary focal 
point F of a plus lens, emerging from the lens parallel. A real 
image at infinity (∞) is created. 
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f
 Primary Focal Length

•F•

f'
Secondary Focal Length

F'

at Infinity
Real Image

OPTICAL AXIS

∞

 
FIGURE 4:17 Cross-sectional view shows rays converging to 
form a virtual object, located at the primary focal point F of a 
minus lens, emerging from the lens parallel. A real image at 
infinity (∞) is created. 

Some common diopter-to-focal length equivalents are 
provided in Table 3. Since the secondary focal length of 
a lens is equal to the reciprocal of its focal power, we 
say that they are inversely proportional to each other. 
This means that as the focal power increases in 
magnitude, the focal length becomes shorter. 

Note: 1 diopter of focal power will focus light at a 
distance of 1 meter. 

TABLE 3 Diopter and focal length equivalents 

Focal 
Power 

(D) 

Focal 
Length 

(m) 

Focal 
Power 

(D) 

Focal 
Length 

(m) 
0.25 4.00 4.50 0.22 
0.50 2.00 5.00 0.20 
0.75 1.33 5.50 0.18 
1.00 1.00 6.00 0.17 
1.25 0.80 6.50 0.15 
1.50 0.67 7.00 0.14 
1.75 0.57 7.50 0.13 
2.00 0.50 8.00 0.13 
2.25 0.44 8.50 0.12 
2.50 0.40 9.00 0.11 
2.75 0.36 9.50 0.11 
3.00 0.33 10.00 0.10 
3.25 0.31 10.50 0.10 
3.50 0.29 11.00 0.09 
3.75 0.27 11.50 0.09 
4.00 0.25 12.00 0.08 

Now that we have a working knowledge of how a lens 
affects the vergence of incident light, we can look at 
what happens to the image distance as an object 
approaches the lens. Consider the conjugate points in 
Figure 4:18 for a +5.00 D lens (f' = 0.20 m). With the 
object at optical infinity, the image is formed at the 
secondary focal length. As the object moves closer, the 
image moves further away. Once the object reaches the 
primary focal point, the image is formed at optical 
infinity. As the object moves even closer, the image 
becomes virtual (it now lies on the left side of the 
lens—in object space). 

•

••

0.20 m∞

0.40 m-0.40 m

•-0.20 m ∞

-0.20 m • •

-0.10 m

A

B

C

D
 

FIGURE 4:18 Conjugate foci for a +5.00 D lens. A) As a 
point object approaches this plus lens from infinity (∞) the 
vergence entering the lens L is 0 and the vergence exiting the 
lens L' is equal to its focal power F, or L = 0 and L' = +5.00 D. 
Light is coming to a focus at the secondary focal point of the 
lens. B) Now L = -2.50 D and L' = +2.50 D. C) Now L = -5.00 
D and L' = 0. Light is being rendered parallel from the 
primary focal point of the lens. D) Finally L = -10.00 D and L' 
= -5.00 D. The image is now virtual. 

There are certain physical and optical characteristics 
that are shared by all lenses with plus power; similarly, 
there are equal, yet opposite, characteristics shared by 
all minus-powered lenses. For instance, moving a plus 
lens will make objects viewed through the lens appear 
to be displaced in the opposite direction of the 
movement, because of prismatic effects that will be 
discussed later. This phenomenon is known as against-
the-motion movement. A minus lens will exhibit the 
same type of effect, but in the opposite direction. 
Objects appear to follow the movement of a minus lens; 
this is known as with-the-motion movement. In 
addition, lenses with cylinder power (which will be 
discussed in Section 5.1) will produce another effect 
when an object is viewed through them while the lens is 
rotated. Objects appear to rotate and/or skew as a lens 
with cylinder is rotated over them; this is referred to as 
scissors-motion movement. These phenomena are 
illustrated in Figure 4:19 and Figure 4:20. 
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Minus lens:
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FIGURE 4:19 Plus lenses produce against-the-motion and 
minus lenses produce with-the-motion image displacement. 

Cylinder lens:
Scissors motion

Image
skews

Lens is rotated
over an object

(two lines)

 
FIGURE 4:20 Lenses with cylinder produce scissors motion, 
causing images to skew when the lens is rotated. 

TABLE 4 Characteristics of plus and minus lenses 

Plus-powered Lenses 
Add convergence to incident light rays 
Are thicker at the center than at the edge 
Magnify images, making them appear larger 
Show against-the-motion image movement 

Minus-powered Lenses 
Add divergence to incident light rays 
Are thinner at the center than at the edge 
Minify images, making them appear smaller 
Show with-the-motion image movement 

Furthermore, because of the relationship between the 
front and back surfaces, plus lenses are generally 
thinner at the edge than at the center. Conversely, minus 
lenses are generally thinner at the center than at the 
edge. A summary of the more notable characteristics of 
plus- and minus-powered lenses is provided in Table 4. 

4.4 BACK VERTEX (THICK LENS) POWER 

Unfortunately, the lensmaker’s formula (Eq. 19) for thin 
lenses quickly loses accuracy for lens forms of 
significant thickness or curvature. For thick lenses, the 
vergence of light as it passes through the lens also needs 
to be taken into consideration. Since we previously 
assumed that the two surfaces of a thin lens were in 
contact at the center, we did not take into account these 
effects. Because of these effects, the power of a thick 
lens is no longer simply equal to the combination of the 
front and back surface powers. 

Another issue to consider is the fact that we assumed a 
theoretical reference plane centered between the two 
surfaces of a thin lens (at their imaginary contact point). 
For thick lenses, this is no longer practical since the 
front and back surfaces are separated by an appreciable 
amount. Consequently, the focal lengths of a thick lens 
depend upon the reference plane that the focal points 
are measured from. Further, since the focal power of a 
lens is equal to the reciprocal of the focal length (Eq. 
23), the reference plane will also affect the stated focal 
power. 

For spectacle lenses, the focal lengths of a lens are most 
easily measured from either the front or back surfaces at 
the vertices. The vertices (V and V') are the positions 
on the lens where the optical axis intersects the front 
and back surfaces. When the focal power of a lens is 
measured relative to a plane containing one of the 
vertices—that is, from either the front or back surface—
we call the measured value the vertex power of the 
lens. 

Further, a thick lens generally produces powers that 
actually differ between measurements from the front 
and the back surfaces (or vertices). In Figure 4:21 and 
Figure 4:22, a comparison is made between the front 
and back vertex powers (FN and FV) of a thick lens and 
an infinitely thin lens. Both lenses have the same 
approximate focal power F of +4.00 D using the 
lensmaker’s formula (Eq. 19): 

F F F= +1 2  

In ophthalmic optics the back vertex power is most 
commonly used. The back vertex power FV is the 
vertex power of the lens, produced by an infinitely 
distant object, as measured from the back vertex V' of 
the surface. 
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+5.00 D -1.00 D F'•
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V V'

 
FIGURE 4:21 Thin lens; F = +4.00 D, FV = +4 .00 D. 
Assume that this lens has a zero center thickness (the 
dimensions in the picture have been exaggerated for clarity). 
For the thin lens, the thickness of the lens can be disregarded, 
and FV = F = FN. Recall that the focal lengths are measured 
from a theoretical reference plane centered within the lens. 
Moreover, the magnitudes of the focal lengths are equal since 
-fN = fV. 

+9.00 D -5.00 D •F'

= +22.8 cmf V= -24.3 cmf N

•F

V V'

 
FIGURE 4:22 Thick lens; F = +4.00 D, FV = +4.39 D. 
Because of the steep front curve and thick center, this thick 
lens will add additional convergence to the wave front as the 
light passes through to the back surface. The thin lens 
approximation is no longer accurate, or FV ≠ F, FN ≠ F, and 
FV ≠ FN. The back focal length fV is measured from the vertex 
V' of the back surface to the secondary focal point F', and the 
front focal length fN is measured from the vertex V of the front 
surface to the primary focal point F. Moreover, the 
magnitudes of the focal lengths are no longer equal since -fN ≠ 
fV. 

The back vertex power FV of a lens can be calculated if 
the front and back surface powers (F1 and F2), the 
refractive index n, and the center thickness t in meters 
are all known. In this situation, the equivalent thickness 
(t / n) of the lens is also considered, which is the 

vergence of the light passing through the thickness of 
the lens. 

To determine the back vertex power, we need to 
consider the refraction at each surface of the lens and 
the equivalent thickness (or t / n). The thick lens in 
Figure 4:23 utilizes a convex front curve F1 and a 
concave back curve F2. 

•

t

F'

f'1

•F1

n

F1 F2

l

 
FIGURE 4:23 To determine the back vertex power of a thick 
lens, the vergence of the light, n / l, as it passes through the 
thickness of the lens must be determined. The reduced 
thickness of the lens is given by t / n. The vergence of light at 
the back surface is given by n / (f1' - t). 

We will now determine, step-by-step, how incident light 
is affected as it passes through a thick lens. Let us first 
consider the interaction of light from a distant object 
with the first surface: 

′ = +L F L1  

Since L is equal to 0 (the object is at infinity), the image 
vergence L' produced by the first surface is simply 
equal to its surface power F1: 

′ =L F1  

Now, the image L' of the first surface becomes the new 
object L of the second surface. The light is now 
traveling through a medium—the lens material—with a 
refractive index of n. To determine what the actual 
object vergence L is, at the plane of the back surface, 
consider the fact that L is equal to 

L
n
l

=  

From Figure 4:23, we can see that the radius of the 
wave front striking the back surface, which is the new 
object distance l, is equal to f'1 - t. Therefore, the object 
vergence L of light incident upon the back surface is 
given by 

L
n

f t
=

′−1
 

where n is the refractive index of the material and t is 
the center thickness of the lens in meters. Moreover, we 
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can substitute the term n / F1 in place of the secondary 
focal length f'1 (using Eq. 17) to give us 

L
n

n
F

t
=

−
1

 

Rearranging the terms slightly results in 

L
F
t
n

F
=

−

1

11
 

We now know that the object vergence at the back 
surface is L. The next step is to add the change in 
vergence produced by the back surface power F2 to 
determine the final image vergence FV:  

F L FV = + 2  

And finally, substituting for L brings us to the back 
vertex power of the lens, as measured from the plane of 
the back surface (or vertex). Our final formula becomes: 

EQ. 24 F
F
t
n

F
FV =

−
+1

1

2

1
 

 
FIGURE 4:24 Measuring the back vertex power of a 
spectacle lens using a focimeter. 

Figure 4:24 demonstrates how the back vertex power of 
a typical spectacle lens is measured using a focimeter, 
which is a telescope-like device that measures both 
focal power and prism. 

When the quantity (t / n)⋅F1 approaches 0, the 
denominator approaches 1 and the first term of the 
formula reduces to just F1. This is the case for thin 
lenses with flatter front curves (typically minus-
powered lenses). The result is the lensmaker’s formula 
for thin lenses provided earlier (Eq. 19): 

F F F= +1 2  

The equations described above are exact formulas. 
There is an approximate version that is easier to work, 
however, and is generally accurate enough for our 
purposes. We can do a binomial expansion on our back 
vertex power formula, and then drop the ‘higher order’ 
terms to give us: 

EQ. 25 F F F
t
n

FV = + +1 2 1
2  

which uses the same variables and quantities that the 
exact formula employs (Eq. 24). This formula further 
illustrates the fact that the power of a thick lens is the 
result of both the thin lens power (given by F1 + F2) and 
the gain in power caused by the thickness and form of 
the lens. 

The latter is given by the additional term, 

t
n

F1
2  

Example 

A certain lens has a +5.00 D front curve, a -1.00 D back 
curve, a center thickness of 4.0 mm (0.004 m), and a 
refractive index of 1.500. What is the approximate back 
vertex power? 

( ) ( )FV = + − +500 100
0 004
1500

500 2. .
.
.

.  

( )F . .V = + − +5 00 100 0 07.  

FV = 4 07.  

∴ Back vertex power is +4.07 D. 

This is a gain in power of only +0.07 D over the thin 
lens approximation—a much smaller difference than the 
previous example. Because of the flatter base curve and 
thinner center thickness, the back vertex power of this 
lens is nearly equal to the approximate power given by 
the thin lens formula. For minus lenses, the thin lens 
formula will often suffice. 

The distance from the back vertex of the lens to the 
secondary focal point F' is known as the back focal 
length fV. 

The back focal length fV is equal to the reciprocal of the 
back vertex power FV: 

f
FV

V

=
1

 

where fV is the distance from the back vertex V' of the 
lens to the secondary focal point F' in meters. Recall 
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that the secondary focal point is the image point 
conjugate with an object at optical infinity (∞). 

Example 

A certain lens has a +9.00 D front curve, a -5.00 D back 
curve, a center thickness of 7.0 mm (0.007 m), and a 
refractive index of 1.500. What is the exact back vertex 
power? 

( )
( )F

.
.
.

.
.V =

−
+ −

9 00

1
0 007
1500

9 00
5 00  

( )F . .V = + −9 39 5 00  

FV = 4 39.  

∴ Back vertex power is +4.39 D. 

Note that the back vertex power is +0.39 D stronger 
than our thin lens approximation of focal power. This 
0.39 D represents the additional gain in vertex power 
produced by the form of the lens (or the front curvature, 
thickness, and index). 

4.5 FRONT VERTEX AND ADD POWER 

Although ophthalmic lenses are specified in terms of 
their back vertex power, lenses will also produce a 
front vertex power FN, or neutralizing power, when 
measured from the front vertex. This is the vergence of 
light from the primary focal point F to the front vertex 
V of the lens. The equation for the front vertex power 
FN of a lens is given by 

EQ. 26 F
F
t
n

F
FN =

−
+2

2

1

1
 

This can be derived using a method similar to that for 
the back vertex power formula (Eq. 24). 

The equation for the front vertex power FN is very 
similar to the equation for the back vertex power FV. 
Indeed, the only difference is that the front curve has 
been substituted for the back curve—and vice versa. In 
fact, solving for the front vertex power equation is 
equivalent to just flipping the lens around (so as to treat 
the old front curve as the new back curve) and re-
calculating for the back vertex power. 

Example 

Given the lens form from our previous example (with a 
+9.00 D front, -5.00 D back, and 7-mm center 
thickness), what is the front vertex power? 

( )
F

.
.
.

.
N =

−

− −
+

500

1
0 007
1500

500
9 00.  

FN = − +4 88 9 00. .  

FN = 4 11.  

∴ Front vertex power is +4.11 D. 

In this example, the front vertex power differs from the 
back vertex power by more than 0.25 D. This further 
illustrates the effects of both the position of the 
reference plane and the form of the lens on measuring 
focal power. 

The distance from the front vertex of the lens to the 
primary focal point F is known as the front focal 
length fN. The front focal length fV is related to the front 
vertex focal power FN by 

f
FN

N
= −

1
 

Recall that with thin lenses, the following relationship 
holds true for the primary and secondary focal lengths 
of the lens: 

− = ′f f  

This is typically not the case for thick lenses. In most 
instances, 

− ≠ ′f fN V  

Multifocal lenses, which will be discussed in Section 
11, reduce the divergence of light from near objects by 
effectively using a small plus lens to render the 
diverging light more parallel. The additional plus power 
provided by the lens is referred to as its add power, and 
is generally produced within a small region of the lens 
referred to as the near zone or segment. When the 
segment is on the front surface, which is generally the 
case, the add power is related to the front vertex power 
of the segment. Specifically, the add power is the 
additional power provided by the segment, itself. This 
additional power is produced by increasing the surface 
power of the lens through the segment by either 
increasing the curvature, as is the case for plastic lenses, 
or by using a higher-index material within the segment, 
as is the case for glass lenses. Some common reference 
points for a typical flat-top bifocal lens are shown in 
Figure 4:25. 
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FIGURE 4:25 The back vertex power FV of the distance 
portion of the lens is measured from the back vertex V'. The 
front vertex power FADD of the segment (‘seg’) is measured 
from the front vertex V. 

Multifocal lenses are verified for distance and near 
powers as follows: 

1. To verify the distance power of the lens, the back 
vertex power through the distance (or ‘major’) 
portion is measured. 

2. To verify the add power of the lens, the difference 
between the front vertex power through the major 
portion and the front vertex power through the 
‘segment’ is measured. 

fN

fADD

FN = Reading 1

FADD = Reading 2
 

FIGURE 4:26 The add power of a multifocal lens is the 
difference between the front vertex powers of the distance 
portion (FN) of the lens and the segment (FADD): Add = FADD - 
FN. This is the difference between the two readings of the 
focimeter. 

To measure the add power accurately, the front surface 
of the lens—containing the segment—should be placed 
against the lens stop of your focimeter (which is an 
instrument for measuring focal power). The first reading 
is taken in the distance portion of the lens and the 
second reading is then taken within the segment, as 

demonstrated in Figure 4:26. The difference between 
the front vertex power of the segment (FADD) and the 
front vertex power of the distance portion (FN) is the 
add power: 

EQ. 27 NADD FFAdd −=  

Note that any cylinder power is neglected. For thin 
lenses (like low- and minus-powered lenses), there is 
little difference between front and back vertex power 
measurements. Consequently, flipping a minus lens 
around to measure it from behind won't affect the add 
power reading very much. Plus lenses, however, should 
always be measured with the front surface against the 
lens stop, since they generally have appreciable center 
thicknesses. In addition, some automatic focimeters 
might compensate for this effect, so refer to its manual 
if you are in doubt. 

We now know that the form and thickness of a lens will 
affect its focal power. Using the back vertex power to 
measure focal power allows us to employ a virtually 
unlimited number of lens forms and thicknesses for a 
given power. Even if we have to use certain front curve 
or center thickness values—for various optical or 
mechanical reasons that will be discussed later—we can 
still produce the same back vertex power by simply 
modifying the back curve accordingly. When surfacing 
a lens, this is known as a vertex power allowance 
(Wray & Jalie 297). 

For instance, a lens with a refractive index of 1.500, a 
front curve of +5.00 D, a back curve of -1.07 D, and a 
center thickness of 4 mm produces a back vertex power 
of +4.00 D. The exact same back vertex power (+4.00 
D) can be produced using a front curve of +9.00 D and 
a center thickness of 7 mm if we employ a back curve 
of -5.39 D. 

The amount of vertex power allowance required can be 
determined by calculating the additional gain in power 
produced by the thickness and form of the lens—at the 
plane of the back surface. Then, subtract this from the 
prescription before determining the back curves using 
the simple lensmaker’s formula for thin lenses (Eq. 19). 
The vertex power allowance A is approximately equal 
to: 

EQ. 28 A
t
n

F= 1
2  

where A is the vertex power allowance in diopters, F1 is 
the front curve, n is the refractive index, and t is the 
center thickness in meters. 
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5. Sphero-cylindrical Lenses 
Up to this point, only spherical lenses have been 
discussed. Spherical lenses have the same power in all 
meridians, producing a point focus as described in the 
earlier sections. However, prescriptions that incorporate 
a correction for astigmatism (which will be described in 
Section 6.2) require a lens with different powers that 
vary from meridian to meridian.  These lenses have a 
meridian of greatest power and a meridian of least 
power, called principal meridians, which are 90 
degrees apart. These lenses are specified by the powers 
in the principal meridians 

5.1 CYLINDER LENSES 

It is possible to produce a lens with two different 
powers by employing a lens surface with the shape of a 
cylinder. A cylinder lens has a cylindrically-shaped 
surface with no surface power (plano) through the plane 
meridian, and maximum surface power 90° away 
through the meridian of curvature. The plano meridian 
is called the axis meridian of the lens, and the 
curvature meridian is called the power meridian. 

Instead of creating a focal point, like a spherical lens, a 
cylinder lens will create a focal line from an object 
point at the secondary focal length of the power 
meridian. This is a result of the fact that refraction only 
occurs through the power meridian, as illustrated in 
Figure 5:1. Further, this line focus is perpendicular to 
the power meridian, and parallel to the axis meridian. 

•

•

PLANO
AXIS MERIDIAN

POWER
MERIDIAN

•
Object
Point

Focal Line

 
FIGURE 5:1 A cylinder lens focuses rays of light from a 
point object to a line image. 

Instead of producing with- or against-motion movement 
like spherical lenses, rotating a cylinder lens will 
produce a scissors-motion movement, which makes 
objects appear to rotate slightly or to skew. As 
illustrated in Figure 5:2, there are two types of 
cylindrical surfaces. A convex cylindrical surface is 
referred to as a plus cylinder, and a concave surface is 
referred to as a minus cylinder. 

Plus Cylinder Minus Cylinder  
FIGURE 5:2 Plus and minus cylindrical sections. 

The orientation of these meridians is critical to produce 
the desired effect, and a cylinder axis corresponding to 
the plano axis meridian needs to be specified. 
Remember that there is no curvature/power through the 
axis meridian, and full curvature/power through the 
power meridian. This axis is noted as being between 1 
and 180 degrees, measured counter-clockwise like a 
protractor. Figure 5:3 is an example showing the 
orientation of the axis meridian of a cylinder rotated to 
axis 45°. 

000°

135°

090°

045°

180°

 
FIGURE 5:3 Cylinder axis notation; axis 45 (as seen when 
viewing the patient or front of the lens). 

The protractor-style axis notation for cylinders is 
demonstrated for both the right and left lenses, as seen 
when facing the wearer, in Figure 5:4.  

RIGHT LEFT

• 000°

090°

180°

Nasal

135° 045°

• 000°

090°

180°

135° 045°

 
FIGURE 5:4 Cylinder axis notation for both eyes, as seen 
when facing the spectacle wearer.  

The degree symbol (°) is not used in the written 
prescription to avoid confusion with the number 0. The 
axis is specified in 1-degree increments. 
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5.2 TORIC LENSES 

Originally, lenses used to produce cylinder power were 
actually cylindrical in form, having one plane meridian 
and one meridian of curvature. Modern lens forms with 
cylinder power, however, will employ a toric (or 
toroidal) surface, having maximum and minimum 
amounts of curvature. A toric surface is another surface 
of revolution that can be created by rotating a circle or 
arc about an axis of revolution that does not pass 
through its center of curvature. 

The word ‘toric’ comes from the Greek word ‘torus,’ 
which is the donut-shaped molding at the base of 
columns. The toric surface often used for spectacle 
lenses, having the shape of a common tire, is illustrated 
in Figure 5:5. This is the type of toric lens surface 
typically generated by conventional surfacing 
equipment. Other toric surface types include the barrel 
and the capstan.  

The meridian of maximum surface curvature FMAX, is 
again crossed at right (90°) angles to the meridian of 
minimum curvature FMIN. The difference in surface 
powers between these two meridians is the amount of 
cylinder power of that surface. Since toric surfaces 
have two surface powers at right angles to each other, 
they produce two different focal powers. Lenses 
utilizing toric surfaces are usually referred to as sphero-
cylindrical lenses, since they can produce both a sphere 
power and a cylinder power. 

Early lenses with cylinder power were produced using 
the convex outside of a toric surface for the front curve. 
These lenses were plus-cylinder in form. Modern 
lenses are produced using the concave inside of a toric 
surface for the back curve. These lenses are minus-

cylinder in form (see Figure 5:5). Minus-cylinder lens 
forms are preferred over plus-cylinder forms because 
they improve cosmetics, reduce magnification from one 
meridian to the other, and are retained more securely in 
frames. Modern, front side multifocal designs also 
necessitate the use of minus-cylinder lens forms. 

Eyeglass prescriptions can also be written in either plus- 
or minus-cylinder form, depending the type of 
equipment employed during the eye examination. The 
cylinder form of the prescription does not, however, 
dictate the actual cylinder form used for producing the 
lenses. Before the lens can be fabricated from a given 
prescription, the cylinder form of the prescription must 
be converted into the desired cylinder form of the lens. 
Details about this conversion will be discussed shortly. 

Lenses containing cylinder power have two principal 
meridians of dioptric power perpendicularly crossed at 
right (90°) angles. The difference in focal power 
between the two principal meridians of a lens—as 
called for by the prescription—is referred to as the 
cylinder power (or nominal cylinder) of the lens—or 
of the prescription. This is the same term given to the 
difference in surface powers. 

The axis principal meridian will contain a focal power 
equal to the sphere power FSPH of the prescription, and 
the power principal meridian will contain a focal power 
FCYL equal to the combined sphere FSPH and cylinder 
power C of the prescription, so that FCYL = FSPH + C. 
Since the power meridian is equal to the combined 
sphere and cylinder power, a sphero-cylindrical lens can 
be thought of as lens with two components: a simple 
spherical component (through all meridians) combined 
with a simple cylindrical component that is oriented at 
the axis of the prescription. 

Arc

C'

•

•

REVOLUTION
AXIS OF

Plus
cylinder cylinder

Minus

C

CMIN••
CMAX

Meridian of
Maximum curvature

Meridian of
Minimum curvature

 
FIGURE 5:5 This tire toric surface was created by rotating arc CC', with its center of curvature at CMIN, around an axis of 
revolution passing through CMAX. Arc CC' represents the transverse meridian of maximum curvature. A second arc is created, 
perpendicular to CC', with its center of curvature at CMAX. This is the equatorial meridian of minimum curvature. If the convex side 
of this toric surface is used as a lens surface, it forms a plus-cylinder lens. If the concave side is used, it forms a minus-cylinder lens. 
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Once the prescription has been converted—or 
‘transposed’—into the correct cylinder form, the axis 
principal meridian (containing the sphere power) will 
correspond to the meridian of minimum curvature. The 
power principal meridian (containing the combined 
sphere and cylinder power) will correspond to the 
meridian of maximum curvature. 

Since the curvature of a toric surface changes from a 
minimum value in the axis meridian to a maximum 
value in the power meridian, the edge thickness of a 
sphero-cylindrical lens also varies. This change in 
curvature and thickness is illustrated in Figure 5:6, for a 
lens made in minus-cylinder form. 

Sphere Sphere + Cyl
 

FIGURE 5:6 The edge thickness of a sphero-cylindrical lens 
varies from a minimum, through the plane containing the axis 
(or sphere) meridian, to a maximum 90° away, through the 
plane containing the power (or combined sphere and cylinder) 
meridian. 

Remember that the orientation of these meridians is 
critical to produce the desired effect, and an axis 
corresponding to the sphere meridian needs to be 
specified. The best technique to visualize the powers of 
the principal meridians of a prescription is to put the 
prescription on an optical cross, as demonstrated in 
Figure 5:7. Here is the preferred method of writing an 
ophthalmic lens prescription incorporating cylinder; 
note that the following two prescriptions are identical in 
power: 

• +2.00 DS +0.50 DC × 045 (Plus cylinder) 

• +2.50 DS -0.50 DC × 135 (Minus cylinder) 

The abbreviation D.S. stands for diopters of sphere, and 
D.C. stands for diopters of cylinder. 

OPTICAL CROSS ANALYSIS 

FSPH = +2.50 D through 135° 
C = -0.50 D  axis 135° 
FCYL = +2.50 + (-0.50) = +2.00 D through 045° 

135° 045°

+2.50 D+2.00 D  
FIGURE 5:7 Optical cross; +2.50 DS -0.50 DC × 135. 

Toric and cylinder lenses produce an astigmatic (or 
non-point) focus, as opposed to a single point focus. A 
lens with cylinder power creates two perpendicular 
focal lines, as illustrated in Figure 5:8 and Figure 5:9. 
Note that each focal line is perpendicular to the 
corresponding principal meridian that produces it. 

A

F
MIN

F
MIN  

B

F
MAX

F
MAX

 

C  
FIGURE 5:8 Astigmatic focal lines of a sphero-cylindrical 
(toric) lens made in minus-cylinder form; +3.00 DS -1.00 DC 
× 090. A) The minimum curvature FMIN of the toric surface 
lies in the vertical meridian (90°) and produces a horizontal 
focal line perpendicular to this. This meridian provides the 
sphere power FSPH of the lens. B) The maximum curvature 
FMAX lies in the horizontal meridian (180°) and produces a 
vertical focal line perpendicular to this. This meridian 
provides the combined sphere and cylinder power of the lens, 
so that FCYL = FSPH + C. C) The astigmatic focus contains 
both focal lines and their interval. 
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FIGURE 5:9 Astigmatic focal lines of a minus-cylinder toric lens for an object at infinity (∞); +2.50 DS -0.50 DC × 180. The 
cylinder power C is the dioptric difference in focal power between the two principal meridians of the prescription, or -0.50 D. The 
average focal position FMEAN of the lens is the location of the circle of least confusion (which will be discussed later). 

Example 

A rear, concave toric surface has a refractive index of 
1.500, an equatorial radius of curvature of 0.1 m, and a 
transverse radius of curvature of 0.0625 m. What is the 
cylinder power of this surface? 

FMIN =
−1 1500

01
.
.

 

FMIN = −500.  

FMAX =
−1 1500
0 0625

.
.

 

FMAX = −8 00.  

The cylinder C is the difference (FMAX - FMIN): 

( )C = − − −8 00 500. .  

C = −300.  

∴ Cylinder power is -3.00 D. 

5.3 FLAT AND TORIC TRANSPOSITION 

Prescriptions for spherical lenses obviously need no 
orientation or cylinder component, since the power is 
uniform throughout every meridian of the lens. 
Prescriptions incorporating cylinder power can be 
written in either of three different forms (the third form 
exists, but is rarely employed):  

1. Plus-cylinder form: This prescription style uses 
the least plus (or most minus) principal meridian 
for the sphere power. The cylinder power is a 
positive (+) value. 

2. Minus-cylinder form: This prescription style uses 
a the most plus (or least minus) principal meridian 

for the sphere power. The cylinder power is a 
negative (-) value. 

3. Crossed cylinder form: This prescription style, 
which is rarely used today, expresses the power of 
both principal meridians as two separate cylinders 
combined. 

Since most modern lenses are made in minus cylinder 
form, prescriptions often need to be converted into it. 
The process of converting between plus and minus 
cylinder form is referred to as flat transposition:  

1.  Add the sphere power FSPH to the cylinder power 
C; the sum is the new sphere power. 

2.  Change the sign of the cylinder power C; this is the 
new cylinder power. 

3.  Change the axis by 90°; this is the new axis of the 
sphere power. To change the axis 90°, add 90° to 
axis values ≤ 90°, and subtract 90° from axis values 
> 90°. 

Example 

A prescription is written as +2.50 DS -0.50 DC × 135 in 
minus-cylinder form. What is the same prescription in 
plus-cylinder form? 

FNEWSPH = + + −2 50 050. ( . )  

FNEWSPH = +2 00.  

C = − − = +( . ) .0 50 0 50  

A = − = °135 90 45  

∴ Prescription in plus-cylinder form is: 

+2.00 DS +0.50 DC × 045 
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135° 045°

-3.50 D-4.00 D

135° 045°

+6.00 D+6.00 D

135° 045°

+2.50D+2.00 D  
FIGURE 5:10 Optical cross confirmation of tool curves; +2.50 DS -0.50 DC × 135. 

Note that an optical cross made from this new 
prescription, +2.00 DS +0.50 DC × 045, will still be 
identical to the previous one. 

Once the base curve of a lens has been chosen, the 
backside surface powers, or tool curves, need to be 
determined to produce the desired prescription. For thin 
lenses, we can employ the now-familiar lensmaker’s 
formula (Eq. 19) to perform a process referred to as 
toric transposition: 

1. Transpose the prescription into minus-cylinder 
form, if it contains a cylinder component. 

2. Subtract the selected base curve F1 from the sphere 
power FSPH to obtain the tool back base curve 
FMIN, so that FMIN = FSPH - F1. If the lens requires 
cylinder power, so that the back surface will be 
toric in form, this will be the meridian of minimum 
curvature. 

3. If the lens requires cylinder power, add the nominal 
cylinder power C to the back base curve FMIN to 
obtain the tool cross curve FMAX, so that FMAX = 
FMIN + C. This will be the meridian of maximum 
curvature. 

In practice, however, the thick lens formula (Eq. 24) 
should be used for determining the correct tool curves 
for toric transposition. The tool curves are often written 
in the following format: 

Base Curve
Back Base Curve/Cross Curve

 

where the top half denotes the front curve and the 
bottom half denotes the back curves. 

Example 

A +2.50 DS -0.50 DC × 135 prescription is made using 
a +6.00 D base curve in minus-cylinder form. What are 
the tool curves? 

F . .MIN = + −2 50 6 00  

FMIN = −350.  

( )F = .MAX − + −350 0 50.  

F =MAX − 4 00.  

∴ Final tool curves are: 

+
− −

6 00
350 4 00

.
. / .

 

These tool curves can be confirmed using optical 
crosses, as demonstrated in Figure 5:10. Once the tool 
curve values have been determined, each tool curve 
may need to be converted using the appropriate tooling 
index, as described in 12.1. The final tool curves then 
need to be rounded to the nearest lap tool increment. 

5.4 SPHERICAL EQUIVALENT 

Most semi-finished base curves are spherical and not 
available in toric form. Therefore, discussions 
pertaining to the selection of base curves for a given 
prescription will use the spherical equivalent for any 
lens powers with a cylinder component. The spherical 
equivalent FMEAN is simply the mean, or average, 
power of the two principal meridians (FSPH and FCYL). 
This is also provides the location of the circle of least 
confusion, which is the dioptric mid-point of the 
astigmatic line foci; refer to Figure 5:9. The spherical 
equivalent can be found by either adding half of the 
cylinder power to the sphere power of the prescription, 
or by using this equation which uses the powers in the 
two principal meridians: 

EQ. 29 F
F F

MEAN
SPH CYL=

+
2

 

where all units are expressed in diopters. 

The same result can be found by using the values in the 
prescription—adding half of the cylinder power C to the 
sphere power FSPH, or 

EQ. 30 F F CMEAN SPH= + 1
2  

Example 

A prescription calls for a +2.50 DS -0.50 DC × 135 
spectacle correction. The powers of the two principal 
meridians, in minus-cylinder form, are +2.50 D for the 
FSPH meridian, and +2.50 + (-0.50) = +2.00 D for the 
FCYL meridian. What is the spherical equivalent? 
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FMEAN =
+2 50 2 00
2

. .
 

FMEAN = +2 25.  

∴ Spherical equivalent is +2.25 D. 

5.5 OBLIQUE POWER OF A CYLINDER LENS 

Recall that the focal power of a lens with a cylinder 
component will vary in power from one meridian to the 
other, because of the change in curvature of the toric 
surface. The principal meridians are 90° apart—or 
mutually perpendicular—and will differ in power by the 
value of the cylinder. Sometimes, it is necessary to 
determine the power of the lens in an oblique meridian, 
somewhere in between the two principal meridians. To 
determine the approximate focal power Fθ through an 
oblique meridian of a lens, we can use the following 
formula:* 

EQ. 31 F F CSPHθ θ= + ⋅ sin2  

where θ is the angle between the oblique meridian and 
the axis of the prescription (which corresponds to the 
sphere meridian), FSPH is the sphere power, and C is the 
cylinder value. 
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FIGURE 5:11 Distribution of cylinder power by meridian. 

Figure 5:11 shows the percentage of cylinder power 
distribution, through various meridians at a given angle 
from the sphere axis of the prescription. For instance, at 
45° away the distribution is 50%. 

By multiplying the cylinder power C by the sine-
squared value of the angle θ between the axis of the 
                                                           
* This formula actually determines the approximate 
circular curvature in the oblique meridian of a 
cylindrical or toric surface (this curvature is actually 
elliptical). Rays passing through oblique meridians of a 
lens with cylinder power are not refracted to a point 
focus, and are called skew rays. The “power” of an 
oblique meridian is merely an approximation of these 
rays (Fannin & Grosvenor 77). 

prescription and the meridian of regard, the contribution 
of the cylinder power in that particular meridian can be 
determined. The contribution is then added to the sphere 
power FSPH to calculate the total power Fθ in the oblique 
meridian of the lens. 

Remember that a lens with a cylinder component will 
have no cylinder power through the axis principal 
meridian of the prescription, which is the same as the 
principal meridian of the sphere power FSPH. Maximum 
cylinder power  (FCYL = FSPH + C) is at the power 
principal meridian 90° away. Moreover, the power of 
the lens through a meridian at 45° away from the axis 
will also be equal to the spherical equivalent discussed 
in the preceding section, since this is effectively the 
same as adding ½ the cylinder power to the sphere 
power. 

Some common percentages for the contribution of 
cylinder power at various angles from the axis are 
provided in Table 5. These values are based upon the 
trigonometric functions of special triangles, and can be 
easily memorized. 

TABLE 5 Common cylinder distribution percentages 

° 030 045 060 090 120 135 150 180
% 25 50 75 100 75 50 25 0 

Like other principles that apply equally to both lenses 
and surfaces, the sine-squared expression can also be 
applied to lens surfaces. In fact, this formula is actually 
based upon the surface curvature of a lens. 

Example 

A certain lens has a power of +2.50 DS -0.50 DC × 135. 
What is the approximate focal power through the 
vertical (90°) meridian of this lens? 

θ = − = °135 90 45  

F .45
22 50 050 45= + − ⋅ °. sin  

( )F45 2 50 0 25= + + −. .  

F45 2 25= + .  

∴ Vertical power is +2.25 D. 
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6. The Eye and Refractive Errors 
Up to this point, ophthalmic lenses have been 
considered as single optical elements. The purpose of an 
ophthalmic lens, however, is to correct—or, more 
accurately, to compensate for—a refractive error of the 
eye. When an ophthalmic lens is used in this capacity, it 
becomes an intrinsic component of the complete optical 
system of the eye. To understand the visual process, the 
fundamental optics of the eye need to be described. 

6.1 OPTICS OF THE EYE 

The basic anatomical and optical structures of the 
human eye are shown in Figure 6:2. The human eye is 
similar to a camera, as depicted in Figure 6:1; it has a 
dark interior chamber, a variable aperture (called the 
pupil) to control retinal illuminance, and the crystalline 
lens, which enables adjustable focusing. The main 
refracting element of the eye is the cornea. Real, 
inverted images are formed on a layer of photosensitive 
tissue, called the retina, by the optical elements of the 
eye (Keating 4). 

 
FIGURE 6:1 A real, inverted image of an object is formed 
upon the retina at the back of the eye. 

 

The physical and optical values of a typical human eye 
have been summarized by various researchers over the 
years to serve as the basis for theoretical studies of the 
optics of the eye. Where possible, these values are 
typically simplified to some extent to allow for 
workable models. One popular eye model, or schematic 
eye, is the Gullstrand-Emsley schematic eye. Some of 
the more relevant characteristics of this schematic eye 
are summarized in Table 6 (Bennett & Rabbetts 250). 

TABLE 6 Gullstrand-Emsley Schematic Eye 

Parameter Value 
Refractive Indices   
      Cornea 1.3760  
      Aqueous Humor 1.3333  
      Crystalline Lens 1.4160  
      Vitreous Humor 1.3333  

Axial Separations   
      Cornea Thickness 0.50 mm 
      Depth of Anterior Chamber 3.60 mm 
      Crystalline Lens Thickness 3.60 mm 
      Depth of Posterior Chamber 16.69 mm 

Surface powers   
      Cornea Front +48.83 D 
      Cornea Back -5.88 D 
      Crystalline Lens Front +8.27 D 
      Crystalline Lens Back +13.78 D 

Overall Length 23.89 mm 

Equivalent Power +60.49 D 

 
FIGURE 6:2 Basic anatomical and optical structures of the eye, including the cornea, pupil, crystalline lens, and retina. In addition, 
the macula—which is the most sensitive area of the retina—and the optic nerve are shown. Reprinted by permission from the 
American Academy of Ophthalmology. 
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Fortunately, the optics of the eye, which are quite 
complex, can be reduced to a rather simplified 
representation referred to as the reduced eye. Figure 
6:3 is a diagram of this reduced eye; which is a single 
refracting surface, bounded by an index of refraction n' 
of 4/3 (≈1.333), with a center of curvature located at 
point N. The center of curvature of the refracting 
surface is referred to as the nodal point (Bennett & 
Rabbetts 19). 

n' = 4/3n = 1

22.22 mm

•

f'

V'

5.56

• N•V F'OPTICAL AXIS

r
 

FIGURE 6:3 The reduced eye. 

Point V serves as the vertex of the surface. The axial 
length of the reduced eye is 22.22 mm and the refractive 
power is 60.00 D, both are close approximations to the 
real eye. An index of 4/3 (or ≈1.333)—the index of 
water—was chosen because it approximates the index 
of the fluids of the eye. A goal is to have the reduced 
eye properly focused; therefore, the secondary focal 
distance also needs to be 22.22 mm so that the image of 
a distant object can be focused on the retina. The focal 
length f' of the eye is measured from the vertex V to the 
secondary focal point F'. The radius of the refracting 
surface of the reduced eye is calculated as follows, 
using the other values, in order to accomplish proper 
focus. 

r =
−13333 1000

60
. .

 

r = 0 005555.  

∴ Radius of the refracting surface of the eye is 
0.005555 m or 5.56 mm. 

The resulting radius is not representative of any real 
curvature of any surface in the eye (e.g. the cornea).  
Nor would we expect it to be, since it is a calculated 
value for a single refracting surface whereas the eye 
actually has both a cornea and a crystalline lens. The 
line passing through the vertices V and V' serves as 
both the visual axis (or the line of sight) and the optical 
axis of the reduced eye. The visual axis is an imaginary 
line of reference passing from the object of fixation, 
through the nodal point, and into the macula of the eye. 
In reality the eye is not a centered optical system; its 

visual axis is not entirely coincident with its optical 
axis. This will be discussed further in Section 9.2. 

6.2 REFRACTIVE ERRORS 

Ideally, the secondary focal point F' of the eye should 
fall upon the retina located at the posterior pole V' of 
the globe. When this occurs, distant objects will come 
to a sharp focus on the retina of the eye creating a 
condition, free from refractive error, called 
emmetropia.  This refractive state is illustrated in 
Figure 6:4. If the secondary focal point fails to coincide 
with the retina, a refractive error is produced, creating a 
condition called ametropia. 

OBJECT AT INFINITY

 
FIGURE 6:4 Emmetropic focus (on the retina). 

The state of ametropia can be classified as either axial 
in nature if it occurs because the axial length differs 
from that of the reduced eye (i.e., the eye is too long or 
short), or as refractive in nature if it occurs because the 
secondary focal length differs from that of the reduced 
eye (i.e., the power is too strong or weak). It is also 
possible to have a combination of axial and refractive 
ametropia, if both the axial length and secondary focal 
length differ from those of the reduced eye. It is 
important to note that an eye can still be emmetropic, 
while deviating from the reduced eye, as long as the 
secondary focal point of the eye coincides with the 
retina. 

Ametropia is categorized by the specific type of optical 
deficiency, or refractive error: 

• Hyperopia: This refractive error occurs when rays 
of light, emanating from an object at infinity, come 
to a focus behind the retina. Either the optical 
elements of the eye are too weak, or the axial 
length of the eye is too short. Hyperopia is 
commonly referred to as farsightedness, and it is 
often possible for small amounts to be 
accommodated into focus by the eye (especially for 
young patients). Otherwise, plus lenses can be used 
to correct it. This refractive state is illustrated in 
Figure 6:5. 

OBJECT AT INFINITY

 
FIGURE 6:5 Hyperopic focus (behind the retina). 

• Myopia: This refractive error occurs when rays of 
light from infinity come to a focus in front of the 
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retina. Either the optical elements of the eye are too 
strong, or the axial length of the eye is too long. 
Myopia is commonly referred to as 
nearsightedness, and can be corrected with minus 
lenses. This refractive state is illustrated in Figure 
6:6. 

OBJECT AT INFINITY

 
FIGURE 6:6 Myopic focus (in front of the retina). 

• Astigmatism: This refractive error occurs when 
rays of light do not come to a focal point, but 
instead form two focal lines after refraction by the 
optical elements of the eye. This effect is caused by 
a non-uniform refraction through the various 
meridians of the eye, and is similar to that produced 
by the cylinder and toric lenses described earlier. 
Astigmatism can be corrected by lenses with 
cylinder power. This refractive state is illustrated in 
Figure 6:7. 

Compound HyperopicCompound Myopic

Simple Myopic Simple Hyperopic

Mixed

 
FIGURE 6:7 Types of astigmatism: mixed astigmatism (one 
focal line in front of and one behind retina), compound 
myopic astigmatism (both focal lines in front of retina), 
simple myopic astigmatism (one focal line in front of and one 
on retina), compound hyperopic astigmatism (both focal lines 
behind retina), and simple hyperopic astigmatism (one focal 
line behind and one on retina). The actual orientation of these 
focal lines will vary—but they will always be at right angles 
to one another (90° apart). 

There are five distinct types of astigmatism, 
depending upon the combination of refractive 
errors in the principal meridians of the eye: mixed 
astigmatism (hyperopic in one meridian, myopic in 
the other), compound myopic astigmatism (myopic 
in both meridians), simple myopic astigmatism 
(myopic in one meridian, emmetropic in the other), 

compound hyperopic astigmatism (hyperopic in 
both meridians), and simple hyperopic astigmatism 
(hyperopic in one meridian, emmetropic in the 
other). These five types of astigmatism, and their 
corresponding focal lines, are shown in Figure 6:7. 

6.3 ACCOMMODATION 

The crystalline lens of the human eye can increase the 
overall focal power up to +70.00 D or more.  This 
process is called accommodation, and its function is to 
bring objects at near into focus. During this process, the 
crystalline lens becomes more bi-convex; effectively 
increasing the plus power of the eye. 

The farthest point from the static eye that objects can be 
brought into focus, with accommodation completely 
relaxed, is called the far point of accommodation. 
This is the object point that is conjugate to the retina of 
the relaxed eye. An object located at this distance will 
create an image distance equal to the axial length of the 
eye. Therefore, objects that are located at—or appear to 
be located at—the far point have focused images on the 
retina. 

The closest point from the eye that objects can be 
brought into focus, with accommodation fully exerted, 
is called the near point of accommodation. Recall that 
the crystalline lens of the eye provides accommodation, 
which is a variable amount of additional plus power, to 
bring objects at near into focus. (The need for plus 
power can be easily demonstrated using Eq. 21.) The 
crystalline lens does this by becoming more bi-convex 
in shape, so that the plus power of the eye is increased. 
This process is illustrated in Figure 6:8. 

NEAR
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FIGURE 6:8 An object 25 cm in front of the eye (0.25 m) 
produces -4.00 D of divergence. A) The optical system of an 
emmetropic eye (with no error) is effectively weak by this 
amount, with accommodation at rest. B) With +4.00 D of 
accommodation, however, the image is brought back into 
focus. 
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FIGURE 6:9 Refractive errors and their corresponding far points of accommodation. For the emmetrope, parallel rays of light focus 
on the retina; the far-point—conjugate to the retina—is also at infinity. For the myope, parallel rays of light come to a focus in front 
of the retina; the far point is a real object point in front of the eye, but within optical infinity. For the hyperope, parallel rays of light 
come to a focus behind the retina; the far point is a virtual object point lying behind the eye.  

As the lens ages, however, it gradually becomes less 
flexible, and slowly loses its accommodative power (or 
amplitude of accommodation). Figure 6:10 is 
Donder’s graph of the normal amplitudes of 
accommodation plotted against age for a typical person 
(Carlson et al. 23). 
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FIGURE 6:10 Reduction in accommodation with age. 

As this aging process happens, near point of 
accommodation begins to recede from the eye. 
Presbyopia occurs once objects can no longer be held 
at a comfortable distance at near with sustained 
accommodation. For most people, this happens in their 
mid-40s. At this point, additional plus power is needed 
for near vision (Bennett & Rabbetts 140). 

With an emmetropic eye, the far point is located at 
infinity, since the secondary focal length of the eye is 
equal to its axial length. When this status fails to be 
achieved, the eye is ametropic, and the far point is no 

longer located at infinity. For hyperopic refractive 
errors, the far point is a virtual object point located 
behind the eye. For myopic refractive errors, the far 
point is a real object point located in front of the eye. 
Astigmatic refractive errors will have two far points 
corresponding to the refractive errors of the principal 
meridians of the eye. The secondary focal length and 
the far point position for both emmetropic and 
ametropic eyes are shown in Figure 6:9, above. 

The total amplitude of accommodation is simply the 
dioptric difference between the far and near points of 
accommodation. For our purposes, we will specify the 
distance m of the far (remote) and near (proximal) 
points of accommodation (MR and MP) from the plane 
of the spectacle lens; which is typically about 13.5 mm 
from the eye. Figure 6:11 and Figure 6:12 show two 
different ametropic eyes, along with their far and near 
points of accommodation. 

The refractive error MR of an eye for distance vision, in 
diopters, is simply the dioptric value of the far point of 
accommodation mR. If both the far and near points of 
accommodation are known, the amplitude of 
accommodation A can also be quickly determined, since 
A = MR - MP. The far and near points of accommodation 
can be converted into their dioptric equivalents by our 
common formula for converting back and forth from 
distances to diopters. This is our familiar formula for 
vergence: 

EQ. 32 M
m

=
1
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Here, m is the distance from the spectacle plane to 
either the far or near point M of the eye in meters. 
Remember to follow the sign convention. 

Example 

An eye has a virtual far point of accommodation 50 cm 
(0.5 m) behind the spectacle plane, and a near point 25 
cm (-0.25 m) in front it. What are the distance refractive 
error and the amplitude of accommodation? 

M R =
1

050.
 

M R = +2 00.  

M P =
−

1
0 25.

 

M P = −4 00.  

A = − −2 00 4 00. ( . )  

A = 6 00.  

∴ Distance refractive error is +2.00 D and the 
amplitude of accommodation is +6.00 D. 

MR
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FIGURE 6:11 Eye with +2.00 D of hyperopia, and an 
amplitude of accommodation of +6.00 D. The far point of 
accommodation MR is 50 cm behind the spectacle plane, 
while the near point MP is 25 cm in front of it. 

Example 

An eye has a real far point of accommodation 50 cm (-
0.5 m) in front of the spectacle plane, and a near point 
20 cm (-0.20 m) in front of it. What are the distance 
refractive error and the amplitude of accommodation? 

M R =
−

1
050.

 

M R = −2 00.  

M P =
−

1
0 20.

 

M P = −500.  

A = − − −2 00 500. ( . )  

A = 300.  

∴ Distance refractive error is -2.00 D and the 
amplitude of accommodation is +3.00 D. 
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FIGURE 6:12 Eye with -2.00 D of myopia and an amplitude 
of accommodation of +3.00 D. The far point of 
accommodation MR is 50 cm in front of the eye, while the 
near point MP is 20 cm in front of the eye. 

6.4 CORRECTING LENSES AND THE RX 

For the hyperope, a plus lens placed in front of the eye 
will provide the eye with the additional plus power 
required to compensate for the fact the refracting 
elements of the eye are too weak. For the myope, a 
minus lens will reduce the plus power of the eye, to 
compensate for the fact that the refracting elements are 
too strong. 

The image produced by an ophthalmic lens becomes the 
object for the optical system of the eye. In the presence 
of a refractive error, the purpose of an ophthalmic lens 
is to produce an image at the far point MR of the eye, 
which is the ideal focal plane. Therefore, a lens power 
is utilized that produces a secondary focal length f' 
equal to the distance mR of the far point from the 
spectacle plane, so that the secondary focal point of the 
lens F' falls upon the far point MR of the eye. If this 
requirement is satisfactorily met, objects at infinity will 
be made conjugate to the retina, providing an artificially 
emmetropic refractive status—free from error. 

This ideal configuration is demonstrated in Figure 6:13 
and Figure 6:14 for plus and minus lenses. 
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FIGURE 6:13 Plus lens corrections. A) Parallel rays of light 
from a distant object focus behind the retina of the hyperopic 
eye. B) Rays of light converging to the far point MR of the eye 
focus on the retina. C) The corrective plus lens converges 
parallel rays from an object at infinity to form a real image at 
F', which corresponds to the far point MR of the eye. This 
image now becomes a virtual object for the eye that is 
conjugate with the retina, and forms a clear image upon it. 

The doctor specifies the optical characteristics a pair of 
ophthalmic lenses should provide for a given wearer by 
writing a spectacle prescription, or ‘Rx.’ The Rx 
describes the focal powers needed to correct the 
refractive errors for distance and/or near vision, as well 
as any prescribed prism. Spectacle prescriptions are 
specified by eye, and the following abbreviations apply 
(Keeney et al. 205): 

• OD (Oculus Dexter) or RE represents the wearer’s 
right eye. 

• OS (Oculus Sinister) or LE represents the wearer’s 
left eye. 

• OU (Oculi Uterque)—when used—represents a 
prescription suitable for both eyes. 

Table 7 shows a common format for eyeglass 
prescriptions, including the sphere power (sph), 
cylinder power (cyl), axis of the cylinder, prism 
magnitude and orientation, and/or add power for the 
right (OD) and left (OS) eyes. 

A  

•
MR

B  

•
F' = MR

f'C
 

FIGURE 6:14 Minus lens correction. A) Parallel rays of light 
from a distant object focus in front of the retina of the myopic 
eye. B) Rays of light diverging from the far point MR of the 
eye focus on the retina. C) The corrective minus lens diverges 
parallel rays from an object at infinity to form a virtual image 
at F', which corresponds to the far point MR of the eye. This 
image now becomes a real object for the eye that is conjugate 
with the retina, and forms a clear image upon it.  

TABLE 7 A typical prescription 

Eye Sph Cyl Axis Prism Add 
OD -4.00 sph   +2.50 
OS -2.50 -0.50 135  +2.50 

The spectacle Rx above depicts a right (OD) eye that requires 
a -4.00 D lens for a myopia correction. The left (OS) eye 
requires a -2.50 DS -0.50 DC lens × 135 for a compound 
myopic astigmatism correction. Both eyes (OU) require a 
+2.50 D add power. No prism was prescribed. 

The sphere (sph) power, cylinder (cyl) power, and axis 
describe the necessary focal powers required by the 
wearer for clear distance vision. The add power 
describes the additional power (if any) needed for clear 
near vision. The prism power describes the amount of 
prismatic deviation (if any) needed to provide 
comfortable binocular vision. To avoid errors in 
prescription interpretation, refractionists generally 
adhere to the following conventions and nomenclature 
when writing spectacle prescriptions: 

• Sphere and cylinder powers are generally 
prescribed and rounded to the nearest 1/4 (0.25) 
diopter step, since this is the smallest discernible 
difference (or just noticeable difference) for most 
people. In some very rare instances, the prescribed 
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power might be rounded to 1/8 (0.125) diopter step. 
In these cases, the last ‘5’ is dropped from the 
thousandth place and it is written ‘0.12.’ 

• The sphere and cylinder powers are both written 
with two decimal places and at least three 
significant figures. It is correct to write ‘0.50 D,’ 
not ‘0.5 D’ or ‘.50 D.’ 

• Both the sphere and cylinder powers should be 
written with the appropriate sign (+ or -) in front of 
them; they should not be assumed. 

• After the sphere power, either one of two 
abbreviations may appear: ‘D’ for diopter or ‘DS’ 
for diopters of sphere. Occasionally, ‘sph’ may be 
written in cylinder power field of the prescription. 

• After the cylinder power, either one of two 
abbreviations may appear: ‘D’ for diopter or ‘DC’ 
for diopters of cylinder. 

• When the sphere powers have different signs, the 
prescription is antimetropic. This is rare except in 
low powers or after certain eye surgeries. When in 
doubt, this should be confirmed with the 
refractionist. 

• Cylinder powers should be written in the same 
cylinder notation, either plus cylinder or minus 
cylinder. If the cylinder power signs are not the 
same, the prescription should be confirmed with the 
refractionist. 

• Prescriptions with cylinder powers should always 
have an accompanying axis designation, which 
describes the orientation of the cylinder. 

• Axes for cylinder powers are generally written 
from 1 to 180 degrees, in 1-degree intervals. The 
degree symbol (°) is not used, since this could be 
confused with a zero (0). 

• Except in rare instances, add powers are usually 
equal. They are also always positive (+). 

The add power, when prescribed, represents the 
additional plus power required for near vision. It is 
most commonly prescribed for presbyopia in which the 
natural accommodation is no longer sufficient.  It is 
called an ‘add’ because it is in addition to the distance 
power—it assumes that the ametropia (refractive error) 
is already corrected. If the wearer prefers a pair of 
single vision reading lenses, as opposed to multifocals, 
you must compute the near vision prescription. To 
determine what the actual near vision prescription for 
each eye is, simply add the add power to the sphere 
power of the distance prescription, and keep the same 
cylinder power and axis. 

An example is provided, below, for a distance 
prescription calling for a +2.75 D add power: 

Near Rx Conversion Sph Cyl Axis 
Original Distance Rx -2.25 -0.50 180 

Plus Add Power +2.75 ↓ ↓
Equals Near Vision Rx +0.50 -0.50 180 

A common rule of thumb is that the patient should not 
have to use any more than half of his or her amplitude 
of—or available—accommodation for an extended 
period of time. For a given working distance (often 
considered to be 40 cm), the add power represents the 
additional plus power required to supplement roughly 
half of the patient’s amplitude of accommodation. For 
instance, consider a patient with an amplitude of 
accommodation of 2.00 D. Half of this value would be 
1.00 D. For this patient to read comfortably at a distance 
of 40 cm (which represents -2.50 D of divergence), an 
add power of 1.50 D would be required (Grosvenor 
334). 

Up to this point, we have discussed single vision lenses 
designed to provide a correction at a single distance. 
However, for presbyopic patients that require both near 
and distance corrections, at least two distinct focal 
powers need to be provided. The most common method 
of providing additional plus power (i.e. the add) at near 
is with the use of a multifocal lens, which is simply a 
lens with more than one focal power for different 
distances. Multifocal lenses will be discussed in more 
detail in Section 11. Figure 6:15 illustrates a typical flat-
top bifocal lens. The major portion provides distance 
vision, and the seg (which is short for ‘segment’) 
provides the add power for near. 

Major Portion

Seg

 
FIGURE 6:15 The flat-top bifocal lens. 

6.5 DEFOCUS BLUR 

The final image, created by the optical system of the 
eye, is the optical image. If this image does not fall 
upon the retina (i.e. the image distance differs from the 
axial length of the eye), the image at the plane of the 
retina is defocused and blurred. The image at the plane 
of the retina is referred to as the retinal image. When 
the optical image lies in a different plane than the retinal 
image because of a refractive error, each point from the 
object will form a defocused blur circle upon the retina 
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(assuming that the pupil aperture is circular). Blur 
circles created by image defocus, which are simply 
diffuse patches of light that have been intercepted either 
before or after coming to a focus, are illustrated in 
Figure 6:16. 

Object
Point

Focal
point

 
FIGURE 6:16 Blur circles produced by defocus. A screen that 
intercepts rays of light—refracted by a lens from an object 
point—will only show a sharp image point at the secondary 
focal point of the lens. At any other location, a diffuse patch 
of light—in the shape of the limiting aperture—is produced. 
For the human eye this aperture is the pupil, which is circular. 
For a given eyeball, the size of the blur circle is directly 
proportional to the size of the pupil and the amount of 
refractive error present (i.e., the distance of the retina from the 
focal point of the eye). 

For lenses that contain cylinder power, this defocused 
patch of light may take on a variety of shapes, 
depending upon where the retina lies within the bundle 
of rays that make up the astigmatic focus. This 
astigmatic focus is referred to as Sturm’s interval (see 
Figure 5:9), and the defocused images produced within 
it are shown for a typical sphero-cylindrical lens in 
Figure 6:17. 

Sphere
focus

Cylinder
focus

Circle of
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FIGURE 6:17 The shape of the defocused patch of light 
produced by this sphero-cylindrical lens varies within Sturm’s 
interval from a vertical line, to vertical ellipses, to a circle, to 
horizontal ellipses, and then a to horizontal line. Note that a 
single image point is never formed. 

Blur circles are a consequence of the fact that rays of 
light focusing in front of the retina (as a result of a 
myopic refractive error) intersect and then begin to 
diverge afterward, while rays focusing behind the retina 
(as a result of a hyperopic refractive error) are 
intercepted before they can intersect or focus. Equal 
amounts of myopic and hyperopic refractive errors 
produce blur circles of equal size. The diameter of the 
blur circle will vary with both the magnitude of the 
refractive error and the size of the pupil. Figure 6:18 
illustrates the blur circles formed by both small and 

large myopic errors, in which rays of light come to a 
focus in front of the retina. 

Blur circle
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FIGURE 6:18 A) Defocus blur created by a small myopic 
refractive error and B) Defocus blur created by a large 
myopic refractive error. In both instances, light rays come to a 
focus in front of the retina, diverge, and then form a diffuse 
patch of light on the retina. For hyperopic refractive errors, the 
retina intercepts the rays before they come to a focus—
thereby creating the same diffuse patch of light on the retina. 
As the pupil constricts (or becomes smaller), the size of the 
blur circle diminishes. As the pupil dilates (or becomes larger) 
the size of the blur circle enlarges. 

For a purely astigmatic error, in which the circle of least 
confusion lies on the retina, the size of the blur circle is 
equal to the circle of least confusion. Moreover, the blur 
circle (and circle of least confusion) for a purely 
astigmatic error is one-half the size of an equivalent 
spherical error of the same magnitude. This means that 
the blur produced by spherical errors is more significant 
than the blur produced by comparable cylindrical errors. 

A blurred image can be thought of as a myriad of 
overlapping blur circles. The larger the blur circle the 
greater the diffusion of visual information, like color 
and intensity, and the more blurred the image. 
Consequently, adjacent parts of the image become less 
distinct, and the transitions between different areas 
become more gradual. A comparison showing the 
effects of blur on an image is provided in Figure 6:19 
and Figure 6:20. 

Because of the fact that the size of the pupil will also 
affect the diameter of the blur circle, smaller pupil 
apertures will increase the depth of focus of the eye. 
This is the amount of refractive error that an eye can 
tolerate, while maintaining a perceived sharp retinal 
image. This is why squinting can sometimes improve 
the sharpness of vision for someone with a refractive 
error. This is also the basis for the pinhole camera, 
which produces an image without a lens. The depth of 
focus of a typical observer under ideal conditions is 
around ±0.25 D (Tunnacliffe 56). 
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FIGURE 6:19 A clear image. 

 
FIGURE 6:20 A blurred image. 

6.6 VISUAL ACUITY 

The visual performance of the eye is typically rated by 
its ability to resolve two points as separate or to discern 
small details. The resolving ability is determined by 
measuring the observer’s minimum angle of resolution 
(MAR). This is the minimum angular separation, 
subtended at the nodal point N, of two object points that 
the eye can still distinguish as separate. The angular 
separation of two object points is illustrated in Figure 
6:21. The capability of a person to detect this minimum 
separation is typically measured by tests of visual 
acuity. An observer’s visual acuity is inversely 
proportional to his or her minimum angle of resolution. 
Consequently, the smaller the MAR, the greater the 
resolving power of the eye (Tunnacliffe 123). 

The size and spacing of the photoreceptive cells, and 
the diffraction* effects of the pupil limit the resolving 
ability of the eye. A normal eye—without any errors of 
refraction—can typically resolve two objects as separate 
when their separation subtends a visual angle of 
approximately one minute of arc (0.0833°). This angle 
is measured at either the entrance pupil or nodal point of 
the eye. Other factors, like the depth of focus and the 
ability of the eye to perceive contrast, will also affect 
visual acuity (Grosvenor 12). 

                                                           
* Diffraction is the wave-like bending (or spreading) of 
light at an aperture, such as the pupil of the eye. 

Minimum angular
separation θ

θ
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FIGURE 6:21 The minimum angle of resolution for an eye 
represents the smallest angular separation θ between two 
object points that will still allow the points to be resolved as 
separate. These angles are measured in arcminutes ('). 

Although there are several methods of measuring and 
specifying visual acuity, Snellen notation—also called 
Snellen acuity—is the most common in the United 
States. This test uses a series of rows of letters, called 
optotypes, which progressively increase in size line by 
line from the bottom row up. A typical Snellen chart is 
shown in Figure 6:22. The test subject reads these 
letters from a distance of 20 feet (or 6 meters). Recall 
that this distance is considered optical infinity. 
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FIGURE 6:22 A typical Snellen chart. The letter in the top 
row subtends 5' at 200 ft, the letters in the next row down 
subtend 5' at 100 ft, and so on. (Not to scale.) 

Each limb and gap of an optotype subtends 1' of arc at a 
given distance, for a total angle of 5' of arc, as shown in 
Figure 6:23. 

5’
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(1/60°)
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FIGURE 6:23 Optotypes subtend 5' at a specific distance. 
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Snellen visual acuity VASNEL is generally written in the 
form of the Snellen fraction, 

EQ. 33 
' sest LetterDist Small

stTesting DiVASNEL 5=
=  

where the denominator is the distance that the line of 
smallest letters read subtends an angle of 5' of arc. 

Having “20/20” acuity means that, at a testing distance 
of 20 feet, a person is able to resolve a letter subtending 
an angle of 5' of arc at 20 ft (6 m). This letter is 8.7 mm 
tall at 20 ft. Such a person has “normal” vision. Having 
“20/40” vision means that, at a 20-ft testing distance, a 
person is only able to resolve a letter that subtends an 
angle of 5' of arc at a distance of 40 ft (12 m). This 
letter is 17.5 mm tall. This also means that the 20/40 
letter is twice as large as the 20/20 letter, as illustrated 
in Figure 6:24 for the Snellen 20/20 and 20/40 optotype 
‘E’s. 

Since the fraction is based upon the minimum angle of 
resolution of a “normal” eye, it can also be said that a 
person with 20/40 acuity can resolve an object at 20 ft 
that someone else with “normal” acuity can resolve 
from 40 ft. The required letter height for the 20/20 ‘E’ 
can be determined by multiplying the tangent of 5' (or 
0.083°) by the testing distance (6 m), or 6 tan 0.083 = 
0.0087 m (or 8.7 mm). 

The most standardized system for specifying visual 
acuity is based upon the logarithm of the minimum 
angle of resolution. Each successively larger line on 
charts using this principle, such as the Bailey-Lovie 
acuity chart, increases geometrically in size by nearly 
26% from the bottom row (specifically, a factor 
increase of 10√10). The LogMAR acuity is provided, 
which is the common (base 10) log unit for the 
minimum angle of resolution for the smallest line read 
at a specific testing distance. Normal acuity, which 
designates a minimum angle of resolution of 1', is equal 
to a LogMAR score of 0. Each successively larger line 
on the chart represents a LogMAR increase of 0.1 log 
units. A conversion table for visual acuity systems is 
provided for comparison in Table 8 (Benjamin 185). 

 

 

TABLE 8 Snellen and LogMAR acuity comparison 

Snellen LogMAR Decimal 
20/20 0.0 1.000 
20/25 0.1 0.800 
20/32 0.2 0.625 
20/40 0.3 0.500 
20/50 0.4 0.400 
20/63 0.5 0.317 
20/80 0.6 0.250 

20/100 0.7 0.200 
20/125 0.8 0.160 
20/160 0.9 0.125 
20/200 1.0 0.100 

The LogMAR acuity VALOG is given by 

MARlog10=LOGVA  

Another system of describing visual acuity, which is not 
as common, is referred to as decimal acuity. The 
decimal acuity VADEC is inversely proportion to the 
minimum angle of resolution MAR, so that 

MAR
1=DECVA  

It is interesting to note that, since the MAR of the 
normal observer is considered to be 1', an observer’s 
decimal acuity is also equal to the decimal form of his 
or her Snellen fraction. For instance, an observer with  
“20/20” Snellen acuity has an MAR of 1'. This observer 
has a decimal acuity of 1 / 1' = 1.0. We can then show 
that 20 / 20 = 1.0. 

The visual acuity of the eye also varies with the size of 
the blur circles created by any refractive errors: 
decreasing as the blur circles increase, since these blur 
circles affect the resolution of the retinal image. 
Moreover, a visual acuity measurement can often give 
an indication of the amount of uncorrected refractive 
error—and vice versa. For instance, the following 
regression formula can be used to estimate the Snellen 
denominator D based upon a refractive error of 
magnitude E (Bennett & Rabbetts 72): 

EQ. 34 D E= +100 5 1 25. .  
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FIGURE 6:24 Heights of Snellen 20/20 and 20/40 ‘E’ at 20 ft and 40 ft, respectively. Note that both letters subtend 5' or arc. 
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where D is the denominator of the Snellen fraction (Eq. 
33) in feet and E is the magnitude of the refractive error 
in diopters.* 

The value of E is equal to the absolute value of the 
spherical error S: 

SE =  

This formula (Eq. 33) should only be used as an 
estimate for predicting visual acuity, since the actual 
acuity will be affected by the test chart luminance, pupil 
diameter, etc (Bennett & Rabbetts 94). Table 9 shows 
the predicted visual acuity for a range of refractive error 
magnitudes, using this formula. 

TABLE 9 Refractive error and predicted visual acuity 

Refractive 
Magnitude E 

Snellen 
Acuity 

Decimal 
Acuity 

0.12 D ≈ 20/20 ≈ 1.000 
0.25 D ≈ 20/25 ≈ 0.800 
0.50 D ≈ 20/30 ≈ 0.667 
0.75 D ≈ 20/40 ≈ 0.500 
1.00 D ≈ 20/55 ≈ 0.364 
1.50 D ≈ 20/100 ≈ 0.200 
2.00 D ≈ 20/180 ≈ 0.111 
2.50 D ≈ 20/315 ≈ 0.063 
3.00 D ≈ 20/560 ≈ 0.036 

                                                           
* When determining the value of E for a sphero-
cylindrical error, use this formula to determine the 
magnitude E of the resulting power vector: 

( )
2

22 CSSE ++
=  

where S is the spherical component and C is the 
cylindrical component of the prescription. 
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7.  Lens Form and Thickness 
Often, it is desirable to know the finished thickness of 
a given lens—which is the final center or edge thickness 
of the lens after surfacing, fining, and polishing. 
Patients purchasing new eyewear may want an estimate 
of the thickness of their new lenses. An idea of the 
maximum thickness of a lens is also required in order to 
determine whether a certain lens blank will work for a 
given power. Like focal power, we will begin our 
discussion of lens thickness with an analysis of the 
geometry of curved refracting surfaces. 

7.1 SURFACE GEOMETRY 

The height (or depth) of the curvature of a surface, at a 
given diameter, is referred to as the sagitta, or simply 
sag, of that curve. This value will vary with both the 
radius of curvature of the surface and the diameter, as 
illustrated in Figure 7:1. With the help of this diagram, 
we can show that the sagitta s of a lens surface can be 
computed for a given diameter Ø, and radius of 
curvature r, using the Pythagorean theorem. This is 
called the sag formula: 

( ) ( )r s r− + ∅ =2 1
2

2 2  

EQ. 35 ( )s r r= − − ∅2 1
2

2
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FIGURE 7:1 The sagittae for both convex and concave curves 
are shown. Using the figure, a right triangle can be formed 
using the radius r as the hypotenuse, ½ Ø as one leg, and the 
quantity (r - s) as the other leg. This is the basis of the sag 
formula. 

If we assume that s and Ø will be relatively small 
compared to r, which is often the case for flatter curves 
and smaller diameters, an approximation of the sag s of 
a lens in millimeters can be found with 

( )
s

r
=

∅1
2

2

2
 

From our definition of surface power (Eq. 14), we can 
show that the radius r, in millimeters, is equal to 

( )
r

n
FS

=
−1000 1

 

Therefore, we can substitute this quantity for r in the 
sag equation, allowing us to solve for sagitta using the 
surface power of the curve. The result is the 
approximate sag formula: 

EQ. 36 
( )

( )s
F

n
S=

∅
−

1
2

2

2000 1
 

The sign (±) of the value is not important, since we are 
only concerned with the magnitude of the sag, and not 
the direction. This last formula shows a specific 
relationship between the sagittal depth and the surface 
power of a lens. If the refractive index is known, either 
value may be utilized for surfacing calculations. If the 
sagittae for both surfaces of a lens are known, it is also 
possible to determine the final thickness of the lens at a 
given diameter. 

Remember that stronger surface powers produce shorter 
radii of curvature. Hence, for a given diameter, the sag 
is directly proportional to the surface power and will 
increase as the power of the surface increases.* Further, 
the sag will also increase as the diameter of the lens 
increases, as shown in Figure 7:2 for a minus lens. 

SMALL DIAMETER

LARGE DIAMETER

sSsL

 
FIGURE 7:2 The sag sS represents the sag at a smaller 
diameter, while sL represents the sag at a larger diameter. 

Example 

A +8.50 D convex curve is ground on a lens material 
with a 1.500 index of refraction. What is the 
approximate sag value of the curve at a 70-mm 
diameter? 

( )
( )s

.
.

=
−

1
2

270 850
2000 1500 1

 

                                                           
* If the exact formula is used, it can be shown that the 
sag of a curve actually increases slightly faster than its 
power—especially for larger diameters. 
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s
.

=
10412 5

1000
 

s = 10 41.  

∴ Sagitta is 10.41 mm. 

7.2 LENS THICKNESS 

Now that we know how to calculate the sagitta of a 
surface, we need to consider the form of the entire lens. 
Most modern lenses are meniscus in form, having 
convex front curves and concave back curves. Recall 
that if the dioptric value of the front curve is greater 
than the value of the concave back curve (absolute 
values), the lens will be positive (plus) in power. 
Similarly, if the dioptric value of the back curve is 
greater than the value of the convex front curve 
(absolute values), the lens will be negative (minus) in 
power. Because these lenses have two surface curves, 
we need to consider the sag of both the front curve s1 
and the back curve s2 for determining thickness.  
Fundamentally, the change in lens thickness is the 
addition of the two sagittae. 

Generally, we are concerned with finding the maximum 
thickness of the lens. This will be the center thickness 
tCNTR of plus lenses and the edge thickness tEDGE of 
minus lenses. These lenses are often produced with a 
certain amount of minimum (or additional) thickness, as 
well. Therefore, in addition to the thickness of each 
curve, we also need to add additional edge thickness for 
plus lenses (the thinnest point of the lens) and additional 
center thickness for minus lenses (the thinnest point of 
the lens). Figure 7:3 depicts the factors affecting the 
final center thickness of a meniscus plus lens. 

s1
s2t EDGE

t CNTR

 
FIGURE 7:3 For a meniscus plus lens, the center thickness 
tCNTR = s1 - s2 + tEDGE. 

To determine the final center thickness tCNTR of a plus 
lens, use the formula: 

EQ. 37 t s s tCNTR EDGE= − +1 2  

To determine the final edge thickness tEDGE of a minus 
lens, use the formula: 

EQ. 38 t s s tEDGE CNTR= − +2 1  

Example 

A meniscus lens (convex front, concave back) has a 
front sag of 6.0 mm, a back sag of 2.0 mm, and an edge 
thickness of 1.0 mm. What is the center thickness and a 
plate height of the lens? 

tCNTR = − +6 0 2 0 10. . .  

tCNTR = 50.  

p = +6 0 10. .  

p = 7 0.  

∴ Center thickness is 5.0 mm and the plate 
height is 7.0 mm. 

When dealing with spectacle lenses of low-to-moderate 
power and reasonable diameter, however, we can 
further simplify the process by ignoring the surface 
curves and form of the lens altogether. This is simply an 
extension of our earlier sagitta approximation, which 
says that the sag of a curve will be directly proportional 
to its power. For a thin lens the surface powers of a lens 
(F1 and F2) must vary at the same rate to provide a 
given lens power according to the lensmaker’s formula 
(Eq. 19): 

F F F= +1 2  

Consequently, the sags of each curve must also vary at 
the same rate. Therefore, the difference between the 
sags will remain constant as the surface powers 
change.* 

To visualize this concept, consider the form of the lens 
as being flat, so that the lens power is produced by one 
surface curve with a single sagitta. The flat plus lens 
will have a convex front curve and a plano (flat) back 
curve, while the flat minus lens will have a plano front 
curve and a concave back curve. With our 
approximation, the difference between the sags of the 
front and back curves will remain constant. 

At this point, we merely have to add the desired amount 
of minimum thickness to determine the final, maximum 
thickness of the lens. These simplified lenses are 
illustrated in Figure 7:4 and Figure 7:5. 

SINGLE SAG
EDGE  

FIGURE 7:4 Flat, plano-convex plus lens. 

SINGLE SAG
CENTER

 
FIGURE 7:5 Flat, plano-concave minus lens. 

We can now substitute the focal power F of the lens—
ignoring the (±) sign—in place of the surface power FS 
in our simplified sag formula, 

                                                           
* This is consistent with our thin lens approximation, 
but will quickly lose accuracy for strong powers or 
large lens diameters. 
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And, to determine the final, maximum thickness of the 
lens tMAX, use the formula: 

t s tMAX MIN= +  

Which, after substituting for s, gives us 

EQ. 39 
( )

( )t
F

n
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where tMIN is the minimum thickness required for the 
lens. 

When prism has been prescribed for the lens, a 
consideration should be made for the additional 
thickness produced by the prismatic effect. The effect 
that prism has on the over thickness of the lens will 
depend upon the power of the lens and the shape of the 
frame, as well as the amount and orientation of the 
prism. For instance, base in prism will typically make 
plus lens slightly thicker and minus lenses slightly 
thinner. Conversely, base out prism will typically make 
plus lens slightly thinner and minus lenses slightly 
thicker. The thickness difference produced by prism is 
discussed in Section 8.4. 

Lens manufacturers often provide center thickness 
guidelines to ensure that these lenses will have enough 
thickness to provide acceptable flexural stability during 
processing. The thickness also has to be substantial 
enough to satisfy the FDA impact resistance 
requirements for safety. 

Most minus lenses are either surfaced to, or supplied in 
finished form with, centers between 1.0 and 2.2 mm—
depending upon the type of lens material and design. 
Plus lenses are typically provided with edges between 
1.0 and 2.0 mm. Plus lenses intended for rimless frames 
may require thicker edges to allow for a groove to be 
cut. Both plus and minus lenses can be no thinner than 
3.0 mm at the thinnest point when used in OSHA safety 
frames. High-powered plus lenses over +3.00 D can go 
down to 2.5 mm at the edge, though. 

Up to this point, we have assumed two things: a lens 
power and a lens blank diameter. Obviously, the power 
should be known. If the diameter is unknown, a few 
more computations may be necessary. This will be 
discussed in more detail in Section 9.3. It is important to 
note that the center thickness of a finished plus lens is 
fixed with respect to the initial diameter of the lens 
blank. Once cast, plus lenses can only be surfaced to 
smaller diameters and thinner centers. When using 
finished plus lenses, the factory blank size should be 
utilized for determining the center thickness. 

7.3 LENS FORMS AND BASE CURVES 

When a manufacturer provides a lens blank with both 
the front and back curves finished to the desired power, 
the lens blank is referred to as a finished lens. When a 
blank is supplied with only one curve finished, the lens 
blank is referred to as a semi-finished lens. These 
blanks require the backside to be surfaced to the desired 
thickness and power, usually by a surfacing laboratory. 

The relationship between the front and back surface 
curvatures of a lens is referred to as the lens form, or 
lens profile. It should now be obvious that a lens can be 
produced by many different lens forms, as long as the 
sum of the front and back surface powers remains 
constant—or at least nearly so (neglecting thickness for 
now). This concept is illustrated in Figure 7:6 and 
Figure 7:7 for +4.00 and -4.00 D lenses made using 
three different lens forms. 

ET = 7.77 mm ET = 7.26 mm ET = 7.05 mm

+4.00 -8.00 +2.00 -6.00 +0.50 -4.50

 
FIGURE 7:6 -4.00 D lens forms. Notice how the form of the 
lens affects the finished edge thickness in minus lenses. 
Steeper lens forms will have greater differences between the 
sagittal values of the front and back surfaces, thereby causing 
increases in the maximum edge thickness. 

Figure 7:6 and Figure 7:7 show how the sum of the 
surface powers can remain relatively constant, even as 
the lens changes in form. However, for thicker plus 
lenses the back surface has to be compensated slightly 
for the gain in back vertex power. It is important to note 
that the maximum thickness—i.e. the edge thickness for 
minus lenses and center thickness for plus lenses—
increases as the form of the lens becomes steeper, and 
vice versa as the form becomes flatter. Consequently, 
flatter lens forms are thinner for a given lens power. 
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CT = 6.59 mm CT = 6.19 mm CT = 5.98 mm

+9.00 -5.00 +7.00 -3.00 +5.00 -1.00

 
FIGURE 7:7 +4.00 D lens forms. In plus lenses, the center 
thickness will vary with the form of a lens. Again, steeper lens 
forms will have greater differences between the sagittal values 
of the front and back surfaces, thereby causing increases in the 
maximum center thickness. 

Lens forms are often arbitrarily classified into either of 
two categories: 

1. Flat lenses: These early lens forms, seldom 
employed today, include plano-concave and plano-
convex lenses with one plane surface, as well as bi-
concave and bi-convex lenses with two concave or 
two convex surfaces, respectively. Flat lenses are 
shown below in Figure 7:8. 

A B C D  
FIGURE 7:8 Flat lens forms. A) Plano-convex; B) bi-convex; 
C) plano-concave; and D) bi-concave lenses. 

2. Bent lenses: These modern lenses are meniscus (or 
crescent-shaped) in form, having a convex front 
curve and a concave back curve. Bent plus and 
minus lenses are shown in Figure 7:9. 

 
FIGURE 7:9 Bent (meniscus) lens forms. 

The base curve of the lens, in diopters, is the surface 
curve that becomes the basis from which the remaining 
curves will be calculated. For a semi-finished lens, the 
base curve will be the factory-finished curve. For 
modern ophthalmic lenses, the base curve is typically 
the front curve of the lens blank, and is usually convex. 
There are very few exceptions to this (Brooks 371). 

Manufacturers customarily produce an integral series of 
semi-finished lens blanks. Such a base curve series is a 
system of semi-finished lens blanks in several 
increments of base curve surface power, so that small 
prescription ranges may be grouped together upon 
common lens blanks. It is the selection of the base 
curve that determines the final lens form for a desired 
lens power. It will be shown later that the selection of 
the base curve is a primary consideration in spectacle 
lens design. Manufacturers make base curve selection 
charts available that provide the recommended ranges 
of final surfaced power for each base curve in the series. 

Periodically, some practitioners may recommend 
matching a wearer’s new base curves to his/her 
previous base curves for new eyewear. This is done 
because the base curve of a lens affects certain 
perceptual aspects of vision, such as magnification and 
distortion. By employing the same base curves when 
the wearer obtains new eyewear, such perceptual 
differences between the new lenses and the previous 
lenses are minimized. Some feel that this makes it easier 
for particularly sensitive wearers to ‘adapt’ to the new 
eyewear. 

However, changes in the wearer’s spectacle prescription 
will also create unavoidable perceptual differences. 
Moreover, the wearer will generally adjust to these 
perceptual differences within a week or so. If the same 
base curve is continually used as the wearer’s 
prescription changes, which might necessitate a change 
in the ‘best form’ base curve, the peripheral optical 
performance of the lens may suffer as a consequence. 
When duplicating lenses of the same lens material, 
design, and power, matching base curves should not 
pose a problem—and is a recommended practice. 
However, unless the wearer has shown a previous 
sensitivity to base curve changes, you should use the 
manufacturer’s recommended base curve when 
changing the Rx, or when using different lens materials 
and/or designs. 

7.4 PLATE HEIGHT 

The variation in thickness between different lens forms 
of the same power has already been described. Various 
lens forms will also produce significant differences in 
the plate height, or overall bulge, between lenses of the 
same power. The physical aspect of plate height is 
described in Figure 7:10. Essentially, the plate height is 
the height of a lens as measured from a flat plane, upon 
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which the lens rests, to a plane tangent to the apex of 
the front surface. 

Plate
Height

 
FIGURE 7:10 The plate height is the height of the lens, as 
measured perpendicularly from a flat plane to the apex of the 
front surface. The plate height can be found by simply adding 
the center thickness to the sag of the back curve, or by adding 
the edge thickness to the sag of the front curve. 

Lens forms with flatter plate heights are more securely 
retained in frames, which is especially important with 
large or exotic frame shapes. It will be shown later that 
a reduction in plate height will also provide a reduction 
in the magnification associated with plus lenses, and the 
minification associated with minus lenses. This gives 
the wearer’s eyes a more natural appearance through the 
lenses. In addition, flatter plate heights are also more 
cosmetically pleasing than steeper, bulbous ones. 

The form of the lens for a given prescription can also 
have a significant effect upon both its cosmetic and 
optical properties. For instance, the weight, plate height, 
and thickness are provided for three different forms of 
two lens powers in The plate height p of a lens can be 
found by adding the sag of the back curve to the center 
thickness of the lens, or by adding the sag of the front 
curve to the edge thickness: 

EQ. 40 p s tCNTR= +2  
or, 

EQ. 41 p s tEDGE= +1  

where s1 is the sag of the front curve, s2 is the sag of 
the back curve, tCNTR is the center thickness, and 
tEDGE is the edge thickness of the lens. 

Table 10 and Table 11. All six of these lenses have been 
computed for a 1.500 index of refraction (CR-39) on a 
70-mm blank size. 

The plate height p of a lens can be found by adding the 
sag of the back curve to the center thickness of the lens, 
or by adding the sag of the front curve to the edge 
thickness: 

EQ. 40 p s tCNTR= +2  

or, 

EQ. 41 p s tEDGE= +1  

where s1 is the sag of the front curve, s2 is the sag of the 
back curve, tCNTR is the center thickness, and tEDGE is the 
edge thickness of the lens. 

TABLE 10 +4.00 D lens 

Front 
Curve 

(D) 

Plate 
Height 
(mm) 

Weight 
 

(g) 

Edge 
Thick. 
(mm) 

Center 
Thick. 
(mm) 

9.00 13.4 20.4 1.0 6.6 
7.00 10.2 18.8 1.0 6.2 
5.00 6.9 17.9 1.0 6.0 

TABLE 11 -4.00 D lens 

Front 
Curve 

(D) 

Plate 
Height 
(mm) 

Weight 
 

(g) 

Edge 
Thick. 
(mm) 

Center 
Thick. 
(mm) 

4.00 12.4 24.0 7.8 2.0 
2.00 9.7 23.2 7.3 2.0 
0.50 7.7 22.9 7.1 2.0 

It should be apparent from the preceding tables that 
flattening a lens form will offer: 

• Reduced plate height 
• Reduced lens weight 
• Reduced center thickness in plus lenses 
• Reduced edge thickness in minus lenses 

Although flatter lenses provide thinner and lighter 
lenses, there are many situations in which steeper lenses 
provide better vision for the wearer. Steeper base curves 
will often provide better vision when the person views 
through peripheral portions of the lens. Providing a 
correction off-axis that performs as well as the 
prescription on-axis is one of the primary motivations 
behind the selection of a particular lens form. This will 
be discussed further in Section 10. Table 12 shows the 
sag values for a range of surface power and lens 
diameter combinations. 

TABLE 12 Sag values at various diameters 

 Diameter (mm) 
 50 55 60 65 70 75

1.00 D 0.6 0.7 0.8 1.0 1.2 1.3
2.00 D 1.2 1.4 1.7 2.0 2.3 2.7
3.00 D 1.8 2.2 2.6 3.0 3.5 4.0
4.00 D 2.4 2.9 3.4 4.0 4.7 5.4
5.00 D 3.0 3.6 4.3 5.1 5.9 6.9
6.00 D 3.6 4.4 5.3 6.2 7.2 8.4
7.00 D 4.2 5.2 6.2 7.3 8.6 9.9
8.00 D 4.9 6.0 7.2 8.5 10.0 11.6
9.00 D 5.6 6.8 8.2 9.8 11.5 13.5

10.00 D 6.3 7.7 9.3 11.1 13.2 15.5

These values are based upon an arbitrary refractive 
index of 1.530. Tables like this can be used to 
determine the exact thickness of a lens. Notice how the 
values from the table increase non-uniformly (or non-
linearly) as the surface power or diameter increases; the 
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sag of a curve actually increases faster than its surface 
power. 

7.5 MEASURING SURFACE CURVATURE 

Sag gauges and lens measures (or lens clocks) are both 
simple instruments that make use of this formula to 
calculate the surface power of a lens, based upon a 
sagittal measurement of its surface. Essentially, the 
curvature of the surface is found by measuring its sag at 
a given diameter. Then, by assuming an arbitrary index 
of refraction, the surface power can be determined. A 
refractive index of 1.530 is generally used for the 
calculation. A typical lens measure is shown in Figure 
7:11. Sag gauges are similar devices that are generally 
larger. Some sag gauges may use a “bell” instead of 
three pins. 

 
FIGURE 7:11 A typical lens measure. 

A typical lens measure has two stationary outer pins and 
a moveable center pin. The outer pins serve as the 
measuring aperture of the device, allowing the center 
pin to measure the sagitta of a lens surface at a given 
diameter—as shown in Figure 7:12. The spring-loaded 
center pin, in turn, is geared to a pointer (like the hand 
of a clock), which indicates the dioptric value of the 
surface along a graduated scale encircling the face of 
the instrument (Jalie 61). 

•

LENS
SURFACE

½ Ø
s

 

FIGURE 7:12 The device measures the sagitta s of a lens 
surface from the plane of its fixed diameter Ø, or measuring 
aperture. 

Since the semi-diameter (½ Ø) of a lens measure is 
relatively small, we can apply our simplified sag 
formula (Eq. 36) to relate the surface power FS to the 
movement s of the center pin, which is the sag of the 
surface at the device’s diameter Ø: 

( )
( )s

F
n

S=
∅

−

1
2

2

2000 1
 

Now, if we assume that the separation of the outer pins 
of the lens measure is 20 mm (½ Ø = 10 mm) and then 
assign an arbitrary refractive index of 1.530, our 
formula simplifies to: 

( )
( )1530.12000

10 2

−
= SF

s  

SFs ⋅= 094.0  

Or, 

094.0
sFS =  

This shows us that the surface power indicated by the 
lens measure is directly proportional to the movement s 
of the center pin of the device. 

Example 

A lens surface is measured with a lens measure and 
causes the center pin to rise a full 1.0 mm. What is its 
1.530-based surface power? 

094.0
0.1

=SF  

64.10=SF  

∴ 1.530-based surface power is 10.64 D. 

Since surface power is directly proportional to the 
sagitta measured by the device, this lens measure will 
indicate 10.64 D of power for every 1.0 mm the pin is 
moved. If the pin is only moved a fourth of that 
distance—or 0.25 mm—the surface power indicated 
will be one-fourth of 10.64 D: ¼ × 10.64 = 2.66 D. 

It is important to note that the surface power indicated 
by the lens measure will only be accurate for lens 
materials with a 1.530 refractive index (or the index the 
device is calibrated to). For lens materials with a higher 
index of refraction, the surface power will actually be 
greater than the indicated power—and vice versa for 
materials with a lower index. It is quite simple, though, 
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to convert the measured surface power to the actual 
surface power, and this is discussed in Section 12.1. 

Keep the following tips in mind when using these 
devices: 

• The correct scale should be read when measuring 
concave versus convex surfaces. For instance, 
certain lens measures employ black letters on an 
outer scale for reading convex surfaces and red 
letters on an inner scale for reading concave 
surfaces. Other lens measures have two sets of 
numbers, going in opposite directions, and a sign (+ 
or -) to distinguish between convex and concave 
readings. 

• Lens measures should be held perpendicularly to 
the lens surface when taking measurements. 
Tipping the pins with respect to the surface will 
produce inaccurate readings. 

• Lens measures and sag gauges should be 
periodically checked for accuracy using either a 
perfectly flat surface or reference standard of 
known curvature. 

• These are precision instruments, and should be 
handled delicately to avoid damaging the device, 
scratching the lens surface, or obtaining inaccurate 
results. 

Lens measures can also be conveniently used to 
measure the amount of slab-off prism in a lens surface 
that has been bi-centrically-ground with two surfaces 
(see Section 12.4). Bi-centric grinding is generally 
done to correct vertical prism imbalance produced with 
multifocals during near vision, and is accomplished by 
grinding the same curvature twice—yet at different 
angles—on one surface of the lens. The tilt of one curve 
with respect to the other is what effectively produces 
the differential prismatic effect, or slab-off, between the 
distance and near portions of the lens. Because of the 
geometry of the lens measure and the relationship 
between surface tilt and prism, the amount of slab-off 
prism can be read directly from the lens measure (Jalie 
154). 

The amount of slab-off prism in a lens can be 
determined by taking a measurement of the curvature in 
the distance portion of the lens surface containing the 
slab-off, and comparing it to a measurement vertically 
straddled across the slab-off line. (The center pin of the 
lens measure should be positioned on the slab line.) The 
difference in curvature measurements between the two 
readings indicates the amount of slab-off prism present, 
in prism diopters. This is demonstrated in Figure 7:13. 

For instance, consider a plastic lens with a slab-off on 
the rear surface. If the lens measure reads -4.00 D in the 
distance portion and -1.00 D across the slab line, the 

amount of slab-off prism present is roughly 3Δ (base 
up), or 4.00 - 1.00 = 3Δ. 

SLAB LINE

♦ ♦ ♦
♦
♦
♦

Reading 1

Reading 2

Distance Portion

Across Slab Line

PIN POINTS

 
FIGURE 7:13 To determine the amount of slab-off with a 
lens measure, first take a reading in the distance portion of the 
lens surface containing the slab-off. Then take a reading 
across the slab-off line of the surface—ensuring that the 
center pin of the lens measure is positioned on the slab line. 
The difference between the two lens measure readings 
indicates the amount of slab-off prism present, in prism 
diopters. 
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8. Ophthalmic Prisms 
Prism is often incorporated into spectacle lenses for 
several reasons: to compensate for anomalies of 
binocular vision, to decenter the optical center, to 
reduce thickness in progressive lenses, etcetera. We 
have already examined the refracting properties of flat 
prisms in detail. These prisms have plane sides, and do 
not change the vergence of incident light from a distant 
object. Most prisms utilized in conjunction with 
ophthalmic lenses, however, are meniscus in shape. 
These prisms have curved surfaces, and often possess 
focal power. This difference is demonstrated in Figure 
8:1 (Wakefield 115). 

Flat Prism Meniscus Prism  
FIGURE 8:1 Flat and meniscus prisms. 

This section will discuss the optics and applications of 
prisms incorporated into ophthalmic lenses. 

8.1 BINOCULAR VISION 

Prism is often incorporated into an optical prescription 
to treat disorders of binocular vision. Binocular vision 
refers to the ability to use the two eyes together when 
viewing an object. When the eyes are properly used 
together, the patient obtains better visual function and 
an improved sense of depth perception called 
stereopsis. 

There are several oculomotor imbalances that can make 
comfortable binocular vision either difficult or 
impossible. When the visual axis of one eye 
converges—or tends to converge—in towards the visual 
axis of the other eye, the eyes exhibit an eso deviation. 
When the visual axis of one eye diverges—or tends to 
diverge—out from the visual axis of the other, the eyes 
exhibit an exo deviation. Both ‘eso’ and ‘exo’ 
deviations are illustrated in Figure 8:2. 

Both eso and exo deviations designate a horizontal 
misalignment of the visual axes. There are also vertical 
deviations. When the visual axis of one eye rises—or 
tends to rise—up from the visual axis of the other, that 
eye exhibits a hyper (above) deviation. Conversely, the 
other eye with the lower visual axis exhibits a hypo 
deviation (below). Generally, we refer to the eye with 
the hyper deviation. 

• •• •
Eso Deviation Exo Deviation  

FIGURE 8:2 When the visual axis of one eye turns in relative 
to the other, the eyes exhibit an eso deviation. When the visual 
axis of one eye tends to turn out relative to the other, the eyes 
exhibit an exo deviation. 

Some patients are unable to keep both eyes aligned and 
have a heterotropia (or strabismus). This is a manifest 
(obvious) deviation of the eyes. Two common types of 
heterotropia are esotropia (or crossed eyes) and 
exotropia (or wall eyes). Other patients are able to keep 
both eyes aligned, but only with excessive effort. This 
latent (concealed) deviation of the eyes is referred to as 
a heterophoria. Three types of heterophoria are: 
esophoria, which is when the the eyes have a tendency 
to cross; exophoria, which is when the eyes have a 
tendency to diverge; and vertical phoria, which is 
when one eye has a tendency to view higher than the 
other. Orthophoria is the condition where no manifest 
or latent deviations exist between the two eyes. 

Patients with an esophoria, exophoria, or vertical phoria 
problem can have symptoms such as eyestrain or 
headaches—especially when performing visually 
demanding tasks.  These conditions also can result in 
double vision and discomfort associated with using the 
eyes. 

In understanding prism prescriptions, it is important to 
keep in mind that the prism is usually prescribed in 
order to move the image of the world in the direction of 
the misalignment of the eyes. This makes it easier for 
the eyes to simultaneously view the object. For 
example, if the patient has an eso condition it means 
that the eyes cross or have a tendency to cross. To 
correct, or relieve, this condition the image seen by each 
eye should be each moved towards the nose of the 
patient—thereby allowing the patient to more easily 
view the world with both eyes aligned on the image. 
Since images are displaced in the direction of the apex 
of the prism, in the case of the eso deviation the apex of 
the prism should be in or towards the nose and the base 
of the prism should be out or towards the edge of the 
face. 

Similar reasoning leads to prescribing base-in prism for 
exo conditions in which the eyes tend to look outwards 
and the image is likewise displaced outwards. For 
vertical deviations, vertical prism is prescribed. For 
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example, if the right eye is misaligned such that it views 
higher than the left, then the patient has a right hyper 
deviation. Note that this is the same as saying the left 
eye views lower than the right, which is as a left hypo 
deviation. For this condition, prism is prescribed base-
down in the right lens and/or base-up in the left lens. 
The prismatic relief of eso and exo deviations is 
illustrated in Figure 8:3. 

• •• •
Base Out Prism Base In Prism  
FIGURE 8:3 Prismatic relief of eso and exo deviations. 

By convention, the ophthalmic industry specifies prism 
by the direction of the base. Therefore, for the eso 
condition discussed above, base-out prism is prescribed. 
Usually, but not always, the amount of prism will be 
split between both eyes. The net effect is fundamentally 
the same, but the increased thickness and magnification 
effects are divided more evenly between the two lenses. 

The magnitude of horizontal deviations is usually 
greater than vertical deviations, the ability of the visual 
system to comfortably overcome horizontal deviations 
is also better. For these reasons, horizontal prism 
prescriptions are usually larger than vertical 
prescriptions. Related to this is the fact that patients are 
much less tolerant of unwanted vertical prism than 
unwanted horizontal prism. 

8.2 OPTICAL CENTER 

Earlier, we observed that the optical axis of a lens was 
an imaginary reference line passing through the centers 
of curvature of the front and back surfaces. Recall that 
the vertices (V and V') are the positions on the lens 
where the optical axis intersects the front and back 
surfaces. Recall that the front and back surfaces are 
parallel at these points, as well (Section 4.2). We know 
that a ray of light striking a medium with parallel sides 
at an angle will leave the medium traveling at the same 
angle—although somewhat displaced. Consequently, if 
the lens is very thin, a ray striking the lens at one vertex 
will leave the lens from the other vertex without being 
deviated from its original path. 

The vertices serve as the locations often marked as the 
optical center of the lens. The optical center of a lens is 
unique in that there is no refraction, or prismatic 
deviation, of the rays of light passing through it—or 

along the optical axis. A ray crossing the optical axis at 
the optical center will exit the lens traveling in the same 
direction. 

For flat lenses—such as bi-convex, bi-concave, plano-
convex, and plano-concave lenses—the optical center 
lies within the actual lens. For meniscus lenses, 
however, the optical center may actually lie outside of 
the lens—along the optical axis. The vertex is still 
marked as the location of the optical center for practical 
purposes, though. Figure 8:4 illustrates how rays of 
light passing through the optical center O of an 
‘infinitely thin’ lens emerge from the lens without being 
deviated. In reality, most lenses have at least some finite 
thickness. A ray of light passing through the optical 
center of a thick lens will be displaced slightly, but still 
exits the lens parallel to its original direction. 

•
O

OPTICAL AXIS
V V'
• •

 
FIGURE 8:4 Optical center of a thin lens. Rays of light 
passing through the optical center of an infinitely ‘thin’ lens 
are not deviated from their original path. For thick lenses, rays 
passing through the optical center are slightly displaced but 
still exit the lens parallel to their original direction. The 
vertices V and V' are the locations on the lens surfaces 
intersected by the optical axis. 

8.3 INDUCING PRISM 

A prismatic effect can be produced by any one of the 
following three methods: 

1. Prism by grinding: A prismatic effect can be 
produced in an ophthalmic lens by simply grinding 
a difference between the edge thicknesses across 
the base-apex meridian of the semi-finished lens 
blank. This essentially tilts the curves relative to 
each other, creating an apical angle. The required 
difference in thickness can be either calculated, or 
found with tables. 

Grinding prism into the lens to move the optical 
center away from the geometric center of a semi-
finished lens blank is routinely done by surfacing 
laboratories that utilize an on-center blocking 
technique. 

2. Prism by obliquity: Tilting the optical axis of an 
ophthalmic lens away from the line of sight will 
also produce a slight prismatic effect, as perceived 
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by the wearer. This small amount of prism by 
obliquity will be discussed in Section 12.7. 
However, this method is not used to provide 
prescribed prism. 

3. Prism by decentration: Ophthalmic lenses with 
power will produce a prismatic effect when the 
optical center is moved—or decentered—away 
from the line of sight. This results from the fact that 
the lens deviates light like an infinite series of 
prisms. This prismatic effect is identical in theory 
to prism produced by grinding, which produces 
prism by effectively moving the optical center of 
the lens. We will study this prismatic effect in more 
detail in the section below. 

Recall that the prism diopter is defined as the number of 
centimeters of displacement over a given distance in 
meters (Section Prism). We can use the fact that parallel 
rays of light incident upon a lens will pass through its 
focal point to calculate the amount of prism produced at 
a given distance from the optical axis (or center). This 
means that a ray of light passing through the lens at a 
distance d from the optical axis, called the 
decentration, is prismatically deviated by the same 
distance over the focal length f’ of the lens, as 
illustrated in Figure 8:5. 

•
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FIGURE 8:5 Derivation of Prentice's rule. A ray of light 
striking the lens at a distance d from the optical center has to 
be deviated that far at the secondary focal plane. 

Therefore, the prismatic deviation Δ of the ray, in prism 
diopters, is equal to 

Δ =
′

d
f

 

when d is given in centimeters and f' is given in meters. 

Substituting the quantity 1 / F for f’, we arrive at 
another useful formula often employed in ophthalmic 
optics, known as Prentice’s rule, which should be 
committed to memory: 

EQ. 42 Δ = ⋅d F  

Or, more simply, the prismatic effect Δ is equal to the 
product of the decentration d of the optical center away 

from the line of sight multiplied by the focal power F of 
the lens. 

As illustrated in Figure 8:6, plus lenses will have 
positive (+) values, and the base direction will be in the 
same direction of the decentration. Minus lenses will 
have negative (-) values, and the base direction will be 
in the opposite direction of the decentration. 

OPTICAL AXIS

Dec
LINE OF SIGHT

MinusPlus

Base

Base  
FIGURE 8:6 Prism base directions. 

If a lens with cylinder is displaced along a principal 
meridian, the prismatic amount can be calculated by 
using the power in that meridian for the Prentice’s rule 
calculation. If the lens is decentered along another 
meridian, then it becomes necessary to determine the 
amount of movement along the two principal meridians 
that would result in the same displacement of the lens 
along the non-principal meridian. This can be 
accomplished with vector analysis. The prismatic 
amount at that point on the lens is the sum of the two 
movements along the principal meridians. Fortunately, 
these calculations—which can be quite tedious—are 
easily performed by modern laboratory computer 
programs. 

It should be kept in mind that Prentice’s rule loses 
accuracy for both high-powered and extremely low-
powered lenses. 

Example 

The optical center of +6.00 D lens is decentered in from 
the line of sight by 3 mm (0.3 cm). What is the 
prismatic effect? 

( )Δ = 0 3 6 00. .  

Δ = 18.  

∴ Prismatic effect is 1.8Δ base in. 
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8.4 PRISM THICKNESS 

In Section 3.3, a prism was defined as a refracting 
element with non-parallel sides. Consequently, this 
means that anytime there is a difference in thickness 
between two given locations on a lens, there is also a 
prismatic effect produced between those two points. 
Conversely, a prismatic effect will produce a difference 
in thickness along the same meridian as the prism when 
measured at equal, but opposite distances, from the 
location of the prismatic effect. This meridian is 
referred to as the base-apex line of the prism. For 
instance, the thickness should be measured at the top 
and bottom of a lens exhibiting vertical prism. 

With the assistance of Figure 8:7 and our familiar small 
angle approximations, we can see that the thickness 
difference t of a prism is roughly equal to 

a
t

=
∅

 

where a is the apical angle and Ø is the diameter of the 
prism, which is usually expressed in millimeters. 
Further, by combining the prism deviation equations 
(Eq. 9 and Eq. 10), we can also see that 

( )a
n

=
−

Δ
100 1

  

where n is the index of the material and Δ is the 
prismatic deviation in prism diopters at the geometric 
center G of the blank. 

t

Ø
a

• ØG

Base-apex Line
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Top

Bottom

 
FIGURE 8:7 Thickness difference of a prism. Because this 
blank has base down (vertical) prism at the geometric center 
G, the thickness difference t is between the top and bottom of 
the lens blank (through the base-apex line). 

After equating these two formulas for a, the thickness 
difference t in millimeters is given by the equation, 

EQ. 43 ( )t
n

=
⋅∅

−
Δ

100 1
 

Similarly, if the edge thickness difference is known, the 
above equation can be solved for the amount of prism 
present at the geometric center. 

When the optical center of a lens is decentered from the 
geometric center of the finished lens shape during the 
edging process, a prismatic effect occurs at the 
geometric center of the lens. This prism can be 
determined using Prentice’s rule (Eq. 42), since the 
geometric center is now effectively decentered from the 
optical center. It is possible to calculate the approximate 
difference in edge thickness between the two edges of 
the lens along the meridian of decentration, which is the 
base-apex line of the prismatic effect (for spherical 
lenses). Although the sample principles apply, the 
calculation of prism and thickness for a sphero-
cylindrical lens is more complex. The thickness 
difference Δt created by decentration (d) is illustrated in 
Figure 8:8 for a plus lens. 
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FIGURE 8:8 Because the optical center O of the bottom lens 
has been decentered from the geometric center G of the lens 
blank by a distance d, a thickness difference Δt is created 
between the left and right edges of the lens blank (through the 
base-apex line). The approximate amount of thickness 
difference can be determined if the prismatic effect at the 
geometric center G is known. 

Example 

A +5.00 D lens, made from high-index plastic (n = 
1.600), is edged to a 45-mm lens diameter with 4 mm 
(0.4 cm) of decentration. What is the approximate edge 
thickness difference between the right and left sides 
along the meridian of decentration? 

First, determine the prismatic effect, which is the 
effective decentration (or distance) of the geometric 
center relative to the optical center from: 

( )00.540.=Δ  

0.2=Δ  

Then, determine the thickness difference along the 
prism base-apex line (i.e., meridian of decentration): 

( )
( )1600.1100

450.2
−

=t  

5.1=t  
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∴ Thickness difference is 1.5 mm. 

Example 

A 50-mm lens without refractive power shows 2Δ of 
base in prism at the geometric center. What is the edge 
thickness difference between the right and left sides? 

( )
( )t =

−
2 50

100 1500 1.
 

t = 2 0.  

∴ Thickness difference is 2.0 mm. 

Table 13 shows the thickness difference values for a 
range of prism and lens diameter combinations. These 
values are again based upon an arbitrary refractive 
index of 1.530. This table represents prisms with no 
thickness at the apex (knife-edged).  

TABLE 13 Knife-edged prism thickness values 

 Diameter (mm) 
 50 55 60 65 70 75

1.00 Δ 0.9 1.0 1.1 1.2 1.3 1.4
2.00 Δ 1.9 2.1 2.3 2.5 2.6 2.8
3.00 Δ 2.8 3.1 3.4 3.7 4.0 4.3
4.00 Δ 3.8 4.2 4.5 4.9 5.3 5.7
5.00 Δ 4.7 5.2 5.7 6.1 6.6 7.1
6.00 Δ 5.7 6.2 6.8 7.4 7.9 8.5
7.00 Δ 6.6 7.3 7.9 8.6 9.3 9.9
8.00 Δ 7.6 8.3 9.1 9.8 10.6 11.3
9.00 Δ 8.5 9.3 10.2 11.0 11.9 12.7

10.00 Δ 9.4 10.4 11.3 12.3 13.2 14.2

8.5 UNWANTED PRISM 

Although any ophthalmic lens with power will produce 
a prismatic effect away from the optical center, an 
unprescribed prismatic effect is generally undesirable, 
and is referred to as unwanted prism. This is the 
primary reason behind decentering the optical center of 
the lens from the geometric center of the frame; to place 
it in front of the eye. The location on the lens where the 
desired prismatic effect, if any, should be verified is 
known as the prism reference point. In the absence of 
prescribed prism, the optical center of the lens should 
coincide with the prism reference point. Unprescribed 
prism at the prism reference point is generally 
unwanted. 

Any net prismatic effect between the two eyes, or prism 
imbalance, can cause uncomfortable binocular vision, 
including head aches, eyestrain, etc. This occurs 
because the prism imbalance between the two lenses 
causes the images to separate. The more the images 
separate, the more difficult it becomes for the eyes to 
fuse them back together. In significant quantities, 

diplopia—or double vision—can result. Horizontal 
prism imbalance in excess of 2/3Δ, or vertical prism 
imbalance in excess of 1/3Δ, is generally considered 
unacceptable. 

For horizontal prisms, the net prism imbalance can be 
found by adding together like bases in the two lenses 
(e.g., base in and base in) and subtracting unlike bases. 
For vertical prisms the net prism imbalance can be 
found by adding unlike bases in the two lenses (e.g., 
base up and base down) and subtracting like bases. 

Example 

A pair of lenses has 2Δ of base in prism in the right eye 
and 1Δ of base out prism in the left eye. What is the net 
prism imbalance? 

Δ = − =2 1 1  

∴ Prism imbalance is 1Δ. 

The net imbalance is also base in, since the initial base 
in value was higher than the base out value. 

8.6 PRISM-THINNING 

There are certain situations, however, where it may be 
advantageous to produce a prismatic effect at the prism 
reference point. For example, grinding equal amounts of 
vertical prism (called yoked prism) in certain 
progressive addition lenses will help reduce their 
overall thickness. The geometry of a progressive lens 
produces a thickness difference between the top 
(distance zone) and bottom (near zone) edges of the lens 
blank. This requires a greater center thickness in order 
to provide the same minimum edge thickness in the near 
zone (at the bottom edge). Consequently, for plus-
powered lenses—or lenses with a significant add 
power—a normal progressive lens blank will be thicker 
than conventional flat-top and single vision lens blanks 
of the same power. 

This process of grinding vertical prism into both lenses, 
known as prism-thinning or equi-thinning, is 
acceptable, since the vertical prism is equal in each eye 
and no prismatic imbalance is created. Prism-thinning 
reduces the thickness differential between the upper and 
lower edges of the lens. It also reduces the overall 
thickness and weight of the lens—particularly in 
progressive lenses with high plus powers and/or add 
powers. This is illustrated in Figure 8:9. Base down 
prism is the most common base direction for prism-
thinning, but base up prism may also be effective in 
some instances (Meister 21). 
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C.T. =
7.0 mm
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5.5 mm

Without Δ With B.D. Δ

A CB  
FIGURE 8:9 A progressive addition lens; +2.00 DS with a 
+3.00 D add power. A) This conventional progressive lens 
without prism-thinning has a center thickness of 7.0 mm. B) 
Base down prism can be ground into the lens to reduce the 
overall thickness. C) The same lens is only 5.5 mm thick at 
the center with prism-thinning. In addition, the top and bottom 
edge thicknesses are now relatively equal. 

So, how much prism-thinning should be used? Ideally, 
the amount of prism-thinning used should be based 
upon the following factors: 

• Distance power (in the vertical meridian) 
• Add power 
• Fitting cross height 
• Fitting cross decentration 
• Frame shape 

For instance, lenses with higher plus powers in the 
distance portion require more prism-thinning. This is 
also true for progressive lenses with higher add powers. 
The fitting height needs to be considered to take into 
account the thickness difference produced by vertical 
decentration. A common rule-of-thumb formula 
provided in some progressive lens processing guides is: 

EQ. 44 Add6.0 thinningPrism ×=  

This shows that a quantity of base down prism equal to 
roughly 2/3rd of the add power should be used. This is 
often recommended when the power through the 
vertical meridian of the lens exceeds +1.50 D or so. 
This formula does not consider factors like the fitting 
height and the distance power, but still produces 
satisfactory results in most cases. For optimum results, 
sophisticated laboratory software can calculate the exact 
amount of prism-thinning required for a given frame 
and lens combination. 

8.7 COMPOUNDING AND RESOLVING PRISMS 

There are essentially two elements that are needed to 
specify a prismatic effect: the magnitude and the 
orientation. It is customary to specify the magnitude (or 
amount) of the prismatic effect in prism diopters (Δ), 

and the orientation of the base of the prism. There are 
two popular systems of prism specification: 

1. Prescriber method: This system, which is 
typically used by doctors who may incorporate 
prisms in their prescriptions, is based upon 
rectangular coordinates. Base directions, such as 
base in, base out, base down, and base up, are 
utilized in conjunction with the magnitude of prism 
required. For example, a prescription may call for 
2Δ base down. In order to attain an oblique 
prismatic effect, both horizontal and vertical 
directions are required (Brooks 7). 

2. Laboratory method: This system, which is 
typically used by surfacing laboratories for 
fabrication purposes, is based upon polar 
coordinates. Using this system, the orientation of 
the base—or prism axis—is specified in 
conjunction with the desired amount of prism in 
that direction. The axis can be greater than or equal 
to 0 and less than 360°. Instead of specifying the 
desired prism as 2Δ base down, it would be 
specified as 2Δ at 270. For an oblique prism, like 2Δ 
base up and 2Δ base in, the polar coordinate 
specification for a right lens would be 2.83Δ at 45. 
A modified style of this system uses only 180°, by 
noting the base direction as down for prism base 
axes between 180° and 360°. 

A diagram demonstrating the notation of the two 
methods is provided in Figure 8:10. It is possible, using 
vector analysis, to convert between rectangular 
coordinates and polar coordinates. Since prism is often 
prescribed initially in a rectangular-coordinate format, it 
is usually necessary for the laboratory to convert to a 
polar-coordinate format. This can be accomplished by 
compounding the horizontal HΔ and vertical VΔ prism 
components into a single, resultant prism RΔ. To 
determine the magnitude of the resultant prism, use the 
formula 

EQ. 45 R H VΔ Δ Δ= +2 2  

To determine the prism axis, first calculate the initial 
reference angle θ of the prism—ignoring its sign (±). 
Next, determine the quadrant of the lens in which the 
base of the prism should be located using Figure 8:10. 
Finally, determine the actual axis of the prism by 
converting the reference angle θ into its correct 
quadrant using the following sign convention. To 
determine the initial reference angle θ, use the 
following formula (ignoring the sign of θ): 

EQ. 46 θ =
⎛
⎝
⎜

⎞
⎠
⎟−tan 1 V

H
Δ

Δ
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FIGURE 8:10 Rectangular and polar coordinates for the right 
and left eyes (looking at the wearer). 

QUADRANT SIGN CONVENTION 

 I Quadrant: Base direction = θ 
 II Quadrant: Base direction = 180 - θ 
 III Quadrant: Base direction = 180 + θ 
 IV Quadrant: Base direction = 360 - θ 

Example 

A prescription written using the prescriber method calls 
for a right lens with 2Δ base up and 2Δ base in. What is 
this prism prescription in polar coordinates (using the 
laboratory method)? 

RΔ = +2 22 2  

RΔ = 2 83.  

θ =
⎛
⎝⎜

⎞
⎠⎟

−tan 1 2
2

 

θ = °45  

And, because the base of the prism is located up and in 
for the right eye, the orientation of the prism falls into 
the first quadrant. This means that the final axis of the 
base of the prism is equal to θ: 

∴ Prism is 2.83Δ at 45. 

Sometimes it is necessary to resolve a single resultant 
prism into two separate vertical and horizontal 
components. This is the reverse of the previous 
procedure used to compound two horizontal and vertical 
components into a single resultant prism. Given a 
resultant prism RΔ with an axis θ, the horizontal HΔ and 
vertical VΔ prism components can be found with these 
two equations: 

EQ. 47 H RΔ Δ= ⋅ cosθ  

EQ. 48 V RΔ Δ= ⋅ sinθ  

The same sign convention from Figure 8:10 is used to 
determine the final directions of the horizontal and 
vertical components from the initial prism axis. The two 
examples used here to convert between polar 

(laboratory) coordinates and rectangular (prescriber) 
coordinates are illustrated in Figure 8:11. 

Right

NOSE

2 Δ

2 Δ

2.83 Δ

45°

In

Up

 
FIGURE 8:11 Converting prism coordinates for a right lens 
with 2Δ base in and 2Δ base up, or 2.83Δ at 45. For rectangular 
coordinates, base in always represents the nasal side of the 
lens, while base out represents the temporal. 

When trying to resolve more than one resultant prism, 
or when trying to compound oblique prism components 
(i.e., not horizontal or vertical), the easiest approach is 
to simply resolve all of the prisms into horizontal and 
vertical components. Then add all of the horizontal 
prism components and, separately, all of the vertical 
prism components. If desired, the final horizontal and 
vertical components can also be compounded back into 
a single resultant prism. 

Example 

A prescription written using the laboratory method calls 
for a right lens with 2.83Δ at 45. What is this prism 
prescription in rectangular coordinates (using the 
prescriber method)? 

( )HΔ = 2 83 45. cos  

HΔ = 2 00.  

( )VΔ = 2 83 45. sin  

VΔ = 2 00.  

Ignore the sign of these components; just use their 
positive values. We will determine their directions using 
our previous sign convention. Because the base of the 
resultant prism is located in the first quadrant of the 
right eye, the prism base directions should be base in for 
the horizontal component and base up for the vertical 
component. This yields 

∴ Prism is 2Δ base up and 2Δ base in. 

Note that our result is completely consistent with the 
previous example. It is also interesting to note that 
many inexpensive scientific calculators have the 
capability to quickly convert between polar coordinates 
and rectangular coordinates. 

With the use of a focimeter, which is the commonly 
used telescope-like device that measures both focal 
power and prism, the prismatic effect—if any—
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produced at a given point through a lens can be quickly 
measured. The target of a manual focimeter is the 
cross-hairs image being observed through the test lens, 
which is superimposed upon a measuring scale 
consisting of concentric circles, called a reticle. The 
target and reticle of manual focimeters display both the 
magnitude and the orientation of any prismatic effects, 
as shown in Figure 8:12. 

1
2
3
4
5

1
2
3
4
5

PRISM AXISReticle

Target
 

FIGURE 8:12 Prism in a focimeter. This prismatic effect can 
be described as 2.83Δ at 45 using the polar coordinate, 
laboratory method. Or, if this was a right lens, 2Δ base up and 
2Δ base in using the rectangular coordinate, prescriber 
method. 

Example 

You are given a semi-finished lens blank that is to be 
ground to a -4.00 D using on-center blocking. It is a 
right lens, and by grinding prism you wish to move the 
optical center in 4 mm (0.4 cm) from the geometric 
center and down 2 mm (0.2 cm). How much prism is 
required to do this (using the laboratory method)? 

First, calculate the amount of vertical prism required to 
move a -4.00 D lens 0.2 cm down: 

( )Δ = −0 2 4 00. .  

Δ = −08.  

The negative (-) sign means that the prism base needs to 
be in the opposite direction of the downward 
movement. Hence, 0.8Δ base up. Second, calculate the 
amount of horizontal prism required to move a -4.00 D 
lens 0.4 cm in: 

( )Δ = −0 4 4 00. .  

Δ = −16.  

The negative (-) sign once again indicates that the base 
needs to be in the opposite direction of the inward 
movement. Hence, 1.6Δ base out. 

Finally, the resultant prism and axis needs to be 
determined using the laboratory method. The magnitude 
of the prism is: 

RΔ = +16 082 2. .  

RΔ = 179.  

The prism base is up and out for the right eye. Using 
our sign convention, the prism axis lies in the second 
quadrant. This means that the final axis is equal to 180 - 
θ: 

θ =
⎛
⎝⎜

⎞
⎠⎟

−tan 1 2
4

 

θ = °27  

(Even if the angle had been negative, we still would 
have used the positive value in our system.) Finally, 
correcting for the second quadrant gives us: 

θ = °− °180 27  

θ = °153  

∴ Prism required is 1.79Δ at 153. 

These prism components, as well as the resultant 
movement of the optical center O from the geometric 
center G, are illustrated in Figure 8:13. 

••G O
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FIGURE 8:13 To move the optical enter of this -4.00 D lens 2 
mm down and 4 mm in, 1.79Δ at 153° is required. This is 
equivalent to 0.8Δ base up and 1.6Δ base out. 

8.8 SPLITTING PRISMS 

Except in some rare instances, prism is prescribed to 
induce disjunctive (or vergence) movements between 
the eyes. A disjunctive movement occurs when the eyes 
move in opposite directions. Prism that produces a 
disjunctive movement causes the images produced by 
the right and left lenses to separate, which—in turn—
requires that the visual axes (or lines of sight) separate 
to maintain fixation on each image. Conversely, if the 
visual axes have a tendency to separate, because of an 
anomaly of binocular vision (i.e., tropia or phoria), 
prism can be prescribed to separate the two images and 
align each with its corresponding line of sight (i.e., right 
or left). This relieves the oculomotor stress created 
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while the eyes try to maintain fixation on an object 
when one eye has a tendency to deviate from the other. 
Prism prescribed in this manner actually allows the 
visual axes to move away from each other enough to 
maintain single binocular vision and/or relieve the 
oculomotor stress. 

Base in prism in each eye or base out prism each eye 
will cause a horizontal disjunctive movement. Base up 
prism in one eye and base down prism in the other eye, 
or vice versa, will cause vertical disjunctive movements. 
On the other hand, base down prism in both eyes or 
base up prism in both eyes will cause conjunctive (or 
version) movements in which the visual axes move 
together in the same direction. 

Large amounts of prism add appreciable thickness and 
weight to a lens. Moreover, because of certain imaging 
aberrations caused by prism, the optical performance of 
a lens with excess prism is also reduced. Consequently, 
if a refractionist prescribes a large amount of prism for 
only one eye, it is customary to split the prism equally 
between both lenses—unless otherwise specified.* This 
practice allows the thickness and weight to be shared 
evenly between both lenses, which improves the 
cosmetics of the eyewear. It also minimizes the 
aberrations caused by prism in each lens. 

To split prescribed prism, follow the guidelines, below: 

Horizontal prism: Split the amount of prism in half. 
The initial base direction (i.e., out or in) will be used for 
both eyes. 

Vertical prism: Split the prism in half. The initial base 
direction (i.e., up or down) will be used for the eye it 
was originally prescribed for, and the opposite base 
direction will be used for the other eye. 

Example 

A prescription is written for 4Δ base up and 2Δ out down 
in the right eye lens. How would the prism be split 
equally between both lenses? 

224 Vertical =÷=Δ  

122 Horizontal =÷=Δ  

The base direction for the horizontal prism is out, so 
both lenses will have base out prism. The base direction 
for the vertical prism is up, so the right eye will have 
base up prism and the left eye will have base down 
prism (opposite to the original eye). 

                                                           
* Certain conditions, such as non-concomitant 
strabismus, may necessitate different amounts of prism 
for each eye. 

∴ Prism required is 2Δ base up and 1Δ base out 
in the right eye, and 2Δ base down and 1Δ base 
out in the left eye. 
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9. Spectacle Frames and Fitting 
The general optics of spectacle lenses has already been 
discussed. These next sections will introduce the basics 
of spectacle frames, frame measurements, and the 
principles of spectacle lens fitting. For a more thorough 
discussion of these topics, you should review any of the 
dispensing references in the bibliography.  

Ophthalmic lenses are held in place before the eyes by 
means of a frame or mounting, as described in Section 
13. Finished eyewear includes both the lenses and the 
frame. The entire process of fitting and dispensing 
eyewear is beyond the scope of this workbook, however 
some of the key principles are presented. 

9.1 SPECTACLE FRAMES 

The primary purpose of the spectacle frame, or 
mounting, is to comfortably support and accurately 
position the spectacle lenses in front of the eyes. To 
accomplish this task, frames must be durable and 
properly fit. Figure 9:1 and Figure 9:2 show samples of 
frames. Key frame components can be seen in these 
pictures. 

• Rims/eyewires: The parts of the frame front that 
surround and support the lenses, either partially 
(e.g. rimless frame) or entirely. 

• Bridge piece: The part of the frame front that 
connects the two rims together, and is supported by 
the bridge of the nose. 

• Temples: Hinged extensions connected to the 
frame front that extend to the ears for support, 
ending in earpieces that contour around the ears. 

Like lenses, frames should be durable, light-
weight/comfortable, and attractive. They must also 
retain their shape and adjustment, and be relatively 
hypoallergenic—since they are in contact with the skin. 
Frame materials are chosen based upon those criteria. 
Frames can be made from a variety of materials that are 
often categorized into two broad groups: plastics and 
metals. 

Plastics include materials like cellulose acetate and co-
polyamide. Metal frames are often constructed from 
various alloys, such as Monel (copper-nickel), that are 
designed to provide high tensile strength, corrosion 
resistance, and so on. Finer metal frames will often be 
plated with a layer of gold, as well. Combination frames 
are also available that include components made from 
both plastics and metal. Figure 9:1 and Figure 9:2 are 
pictures of frames made from plastics and metal 
(Obstfeld 78). 

 
FIGURE 9:1 Plastics frame. 

 
FIGURE 9:2 Metal frame. 

Ideally, spectacle frames will only contact the wearer at 
three points. Collectively these points are known as the 
fitting triangle: the top of the right and left ears and the 
crest of the nose. These three contact points, as 
illustrated in Figure 9:3, bear the weight of the 
eyeglasses. The weight supported by each of the 3 
points will depend upon  many factors, including the 
mass of the frame, the type of bridge piece, the style of 
temples, the weight of the lenses, and how well the 
frame is fit (Stimson 200). 

Frames are also chosen by the wearer on the basis of 
shape, color, and other aesthetic qualities. The shape 
and width of the frame plays an important role in the 
size, thickness, and positioning of the spectacle lenses 
with which it will be glazed. 

Fitting Triangle

PRESSURE

 

FIGURE 9:3 Spectacle frame fitting triangle. 

The dimensions of the spectacle frame and lens are 
based upon a standardized system of measurement 
called the Boxing System, which is described in Table 
1 and illustrated in Figure 9:4 and Figure 9:5 (ANSI 5). 
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FIGURE 9:4 The Boxing System. The parameters are 
described in Table 11. 

TABLE 14 Boxing System frame and lens dimensions 

A Eye size. The horizontal width between 
the two vertical lines tangent to the edges 
of the lens—or a box enclosing the lens. 

B The vertical height between the two 
horizontal lines tangent to the edges of 
the lens—or a box enclosing the lens. 

G The geometric center of the imaginary 
box enclosing the edges of the finished 
lens or aperture. (½B and ½A 
measurements.) 

DBC Distance between centers. The 
separation between the geometric centers 
of the right and left lens apertures. 

DBL Bridge size. The minimum distance 
between the two lenses or apertures. 

ED Effective Diameter. Twice the longest 
radius from the geometric center of lens 
to the apex of the edge; the smallest circle 
that will completely enclose the lens. 

The separation between the geometric centers of the 
lenses, or the lens apertures of the frame, is known as 
the distance between centers DBC. The DBC of a 
frame is illustrated in Figure 9:5. This distance is equal 
to the sum of the eye size (or, 2 times half of the eye 
size) plus the bridge size, 

EQ. 49 DBLADBC +=   

where DBC is the distance between the geometric 
centers of the frame apertures, A is the eyesize (or A-
measurement) of the frame, and DBL is the bridge size 
(or distance between lenses) is the bridge size in 
millimeters. 

Most spectacle frames will have at least the eye size A, 
bridge size DBL, and temple length measurements 
marked upon the frame; usually on the back of the 
bridge piece or on the inside of a temple. 

• •

DBC

A DBL

G G

 
FIGURE 9:5 DBC measurement. Line DBC is the distance 
between the geometric centers of the right and left lenses, or 
lens apertures, and is equal to the sum of A + DBL. 

9.2 LENS CENTRATION 

Spectacle lenses intended for general use should be 
positioned in the frame to place the optical centers 
directly in front of the lines of sight (or visual axes) of 
the eyes. This prevents the wearer from encountering 
unwanted prism—caused by looking away from the 
optical centers—while staring straight ahead in 
primary gaze. If prism has been prescribed, the prism 
reference points should be directly in front of the lines 
of sight. The separation between the lines of sight, 
while fixating a distant object, is known as the 
binocular interpupillary distance (PD). 

Although we often think of the interpupillary distance 
as the distance between the pupil centers, this is not 
entirely accurate. When fixating an object, the eye 
rotates so as to place the image upon the most sensitive 
area of the retina. This area, known as the macula, is 
offset temporally from the center of the back of the eye. 
Consequently, the optical axis of the eye and the pupil 
rotate out roughly 5°, to align the visual axis of the eye, 
which passes through the nodal point N to the macula 
M, with the object of fixation. This is illustrated in 
Figure 9:6 (Stimson 136). 

OPTICAL AXIS

VISUAL AXIS
α ME

Nasal
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FIGURE 9:6 Top view of the right eye. The eye has to rotate 
out by the angle α, which is roughly 5°, to align the macula at 
point M with the object of fixation E. 

The visual axis of the eye is not entirely coincident with 
the optical axis (which passes through the center of the 
optics of the eye). To measure the separation between 
the visual axes, corneal reflections can be used. These 
reflections can be measured with a penlight and a ruler, 
a corneal reflection pupillometer, or a similar device. 

For precision measurements, the monocular 
interpupillary distances (PDEYE) are often used since the 
face is seldom completely symmetrical. The monocular 
interpupillary distance is the distance from the center of 
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the bridge of the nose to the line of sight of each eye, 
individually. When separate monocular interpupillary 
distance measurements are not given, the monocular 
PDEYE measurements are assumed to be half of the total 
PD measurement (PDEYE = ½ PD). Both the binocular 
and monocular interpupillary distance measurements 
are illustrated in Figure 9:7 (Obstfeld 223). 

PD

PDLEFTPDRIGHT  
FIGURE 9:7 Monocular and binocular interpupillary distance 
measurements. 

Generally, the DBC distance is wider than the 
interpupillary distance, which means that the optical 
center of each lens will have to be moved from the 
geometric center of the frame in order to position it in 
front of the line of sight. The process of moving the 
optical center of the lens from the geometric center of 
the lens aperture of the frame is known as 
decentration. This is illustrated in Figure 9:8. 
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FIGURE 9:8 The decentration d is the movement of the 
optical center O of the lens blank from the geometric center G 
of the finished, edged lens. 

For each eye, the decentration required to place the 
optical center in front of the line of sight of each eye is 
given by 

EQ. 50 EYEEYE PD
2

DBCdec −=  

For positive (+) values of the decentration, the optical 
center should be decentered in (nasally) from the 
geometric center of the frame aperture. For negative (-) 
values, the optical center should be decentered out from 
the geometric center. 

 

 

Example 

A frame has an eye size of 54 mm, a bridge size of 16 
mm, and is fit on a patient with a 64-mm PD. What is 
the required decentration (for each eye)? 

2
64

2
1654dec −

+
=  

3235dec −=  

3dec =  

∴ Decentration is 3 mm per each eye. 

Once the decentration of the lenses has been computed, 
it will be used to layout, or position, the optical centers 
of the lenses during the blocking process. This ensures 
that they will be positioned correctly within the frame, 
as illustrated in Figure 9:9. It is important to note that 
the prism reference point, which is the point on the 
lens that satisfies any prescribed prism requirements, is 
the actual point on the lens that is decentered during the 
layout process. In the absence of any prescribed prism, 
the prism reference point is coincident with the optical 
center of the lens. We will continue to use the term 
optical center for simplicity. 
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FIGURE 9:9 To avoid inducing unwanted prism, the optical 
center of the lens at point O is centered in front of the visual 
axis. It is decentered from the geometric center at point G, by 
the decentration d. 

At this point, it is important to note that the term 
‘decentration’ has two distinct meanings, depending 
upon the context (Brooks & Borish 543): 

• Moving the optical center—or prism reference 
point—of a lens from the geometric center of the 
lens aperture of the frame. 
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• Moving the optical center away from the line of 
sight (Section 8.3), which induces a prismatic 
effect. This can be either wanted or unwanted. 

So, what happens when spectacle lenses are not 
decentered properly? The effects can be readily 
understood if we refer back to Prentice’s rule (Eq. 42). 
In Figure 9:10, two minus lenses have not been 
decentered in adequately. Consequently, the visual axes 
intersect the lenses in from the optical centers. At these 
points, the lenses produce a base in prismatic effect that 
causes the eyes to diverge out slightly in order to 
compensate for it. 

For instance, a 2-mm centration error (out) per eye for a 
pair of -4.00 D lenses would produce an error of 0.2 (-
4.00) = 0.8Δ base in for each eye. This induces a 
combined prism imbalance of 1.6Δ base in. 

PD

Optical Center Distance

O O••

 
FIGURE 9:10 Incorrect lens centration results in unwanted 
prism. In the example above, these minus lenses have 
produced a base in prismatic effect as consequence of 
inadequate decentration. This base in prism causes the eyes to 
diverge. 

Although the lines of sight are parallel with each other 
for distant vision, they converge together when fixating 
an object at near. The separation between the lines of 
sight (measured in the plane of the spectacle lenses) 
when they are converged to fixate a near object is 
referred to as the near interpupillary distance NPD. 
The near interpupillary distance, as the eyes converge to 
fixate an object at O, is illustrated in Figure 9:11. Using 
the similar triangles, we can show that the monocular 
near interpupillary distance NPDEYE, in millimeters, is 
equal to 

EQ. 51 EYEEYE hw
w PD

10
10NPD ⎟

⎠
⎞

⎜
⎝
⎛

+
=  

where w is the patient’s working distance in 
centimeters, PDEYE is the monocular interpupillary 
distance in millimeters, and h is the distance in 

millimeters from the center of rotation to the spectacle 
plane. 
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FIGURE 9:11 The monocular near interpupillary distance 
NPD for each eye, as the eyes converge to fixate an object at 
point O, can be found using similar triangles. NPD is 
proportional to PD, as w is proportional to w + h.  

Table 15 below shows the calculated monocular 
NPDEYE values for various monocular PDEYE values and 
working distances. It is often simpler to use such a 
table, rather than to manually calculate the NPD. 

TABLE 15 Monocular near interpupillary distances 

 
PD 

Working Distance 
(cm)  

(mm) 100 50 40 33 25 20 
28 27.3 26.6 26.2 25.9 25.3 24.7 
29 28.2 27.5 27.2 26.8 26.2 25.6 
30 29.2 28.5 28.1 27.7 27.1 26.4 
31 30.2 29.4 29.0 28.7 28.0 27.3 
32 31.2 30.4 30.0 29.6 28.9 28.2 
33 32.1 31.3 30.9 30.5 29.8 29.1 
34 33.1 32.3 31.9 31.4 30.7 30.0 
35 34.1 33.2 32.8 32.4 31.6 30.8 

However, because of prismatic effects, the distance 
power of the lens will also affect the patient’s near 
interpupillary distance. Minus lenses require slightly 
less decentration, and plus lenses require slightly more. 
This table has been calculated with a distance h of 27 
mm. For longer values (i.e., longer vertex distances) the 
required decentration increases, and vice versa for 
shorter distances. 

The difference between the PDEYE and NPDEYE for each 
lens is known as the inset, and is important when 
fabricating multifocals. Multifocal lenses have an 
additional segment for near viewing, which must be 
centered relative to the lines of sight as they converge 
for near vision. Lens inset is illustrated in Figure 9:12. 
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FIGURE 9:12 To position the segment in order to allow for 
the convergence of the eyes, the optical center of the segment 
O' is centered in front of the visual axis. It is decentered in 
from the distance optical center O, by the amount of inset i. 

For each eye, the inset is simply equal to the difference 
between the monocular interpupillary distance PDEYE 
and the monocular near interpupillary distance NPDEYE, 
so that 

EQ. 52 EYEEYEEYE NPDPDinset −=  

where PDEYE and NPDEYE are the monocular distance 
and near interpupillary distances for either the right of 
left eye. 

For multifocals, a separate vertical measurement is also 
required to place the segment at the desired location 
below the lines of sight. The segment height is 
measured from a horizontal plane, tangent to the bottom 
of the lens, to the top edge of the segment. 

The objective is to place the segment low enough as to 
not interfere with distance vision, yet high enough to 
allow the wearer to reach it comfortably when the lines 
of sight are lowered for near vision. For most bifocal 
lenses, the top edge of the segment should be placed at 
about the level of the lower eyelid when viewing 
straight ahead and level with the patient’s eyes. For 
most trifocals, the top edge of the segment should be 
placed between the lower pupil edge and the lower 
limbus. The placements of flat-top bifocal and trifocal 
lenses are demonstrated in Figure 9:13. 

height
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FIGURE 9:13 Placement of multifocal segments. A) Flat-top 
bifocals are generally placed at the lower lid or limbus. B) 
Trifocals are generally placed between the lower edge of the 
pupil and the lower limbus. 

The segment height should always be measured from 
the bottom edge of the lens, or the lowest point in the 
rim of the frame. Since the bottom edge of the lens rests 
in the bevel of the frame, which can not be seen when 
looking straight at the wearer, it becomes necessary to 
consider this when making the measurement. 

The vertical positioning of the segment within the frame 
aperture is determined by the segment drop, which is 
simply the vertical displacement of the segment (from 
the geometric center of the frame) required to achieve 
the desired segment height: 

EQ. 53 height seg
2
Bdrop seg −=  

where B is the vertical depth of the frame. For positive 
(+) values of the segment drop, the segment will be 
lowered from the geometric center of the frame 
aperture. For negative (-) values, the segment will be 
raised from the geometric center. 

The layout and positioning of a typical multifocal 
segment—including the decentration of the optical 
center O, the segment inset i, segment height s, and seg 
drop y—is summarized in Figure 9:14. Most of these 
measurements are made relative to the geometric center 
G of the finished lens (or the frame aperture). 
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FIGURE 9:14 The distance s represents the height of the top 
edge of the segment from the bottom edge of the lens, or the 
lowest point inside the rim of the frame. The distance d 
represents the horizontal decentration of the distance optical 
center O from the geometric center G of the frame aperture. 
The distance i represents the horizontal inset of the segment 
optical center O' from the distance optical center O. The 
distance y represents the vertical drop of the top of the 
segment from either the geometric center of the frame 
aperture G, or the distance optical center O. 

The placement of a progressive addition lens is 
determined by the location of its fitting cross, which is 
typically placed directly in front of the center of the 
pupil, as illustrated in Figure 9:15.  This is also 
measured from the bottom edge of the lens. 

 
FIGURE 9:15 Fitting progressive addition lenses. The fitting 
cross should be centered directly in front of the pupil center 
with the eye in its primary gaze. 

Because the zones of usable vision afforded by 
progressive addition lenses are often smaller than the 
zones of conventional multifocals, progressive lenses 
also require more careful fitting. Small errors in the 
placement of the fitting crosses can result in 
considerable losses in the field of view and wearer 
dissatisfaction. 

Some additional fitting factors to consider include: 

• Fit the frame to the patient before taking any 
measurements. 

• Always take monocular interpupillary distance 
measurements. Most manufacturers recommend 
using the distance PD measurements, though some 
may suggest using the near PD measurements. If 
the near PD measurements are used, the insets of 
the lenses are added to them to arrive at the 
distance PD measurements. Most new progressive 
lens designs, however, use accurately computed 
variable sets, which supersede the need for this 
practice. 

• Maintain a short vertex distance to maximize the 
fields of view through the near and intermediate 
zones. Eight to 14 mm is an acceptable range. 

• Ensure that the frame has a short vertex distance, 
and at least 10 to 14° of pantoscopic tilt, to 
maximize the fields of view. 

• Some face form wrap will also be beneficial. 
• Measure the segment height to the center of the 

pupil as the patient’s eye is in primary gaze. 
• Select a frame with a minimum segment height of 

22 mm for most lens designs. 

For edging layout, the entire horizontal movement of 
the segment center from the geometric center of the 
frame aperture needs to be computed. The total inset of 
the segment of a lens is the sum of the decentration of 
the distance optical center (or the prism reference point) 
and the inset of the segment, so that total insetEYE = 
decEYE + insetEYE. This is the actual distance that the 
segment is moved from the geometric center G of the 
frame aperture: 

EQ. 54 EYEEYEEYE insetdecinset total +=  

Total inset can also be expressed as, 

EQ. 55 EYEEYE NPD
2

DBCinset total −=  

Example 

You are given the following eyewear specifications; a 
32-mm DPD for each eye (OU), a 30-mm NPD for each 
eye, a measured segment height of 18 mm, a 54-mm 
frame eye size, a 50-mm frame B measurement, and a 
16-mm bridge. What are the measurements for lens 
layout? 

18
2

50drop seg −=  

7drop seg =  

1654DBC +=  
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70DBC =  

32
2

70dec & −=LR  

3dec & =LR  

3032inset & −=LR  

2inset & =LR  

3035inset total & −=LR  

5inset total & =LR  

∴ Final layout measurements are: 

Segment drop: 7 mm down per eye. 
Decentration: 3 mm in per eye. 
Segment inset: 2 mm in per eye. 
Total inset: 5 mm in per eye. 

9.3 PANTOSCOPIC TILT 

Other fitting considerations are needed to ensure 
maximum performance from the spectacle lenses. As 
with most fitting parameters, they are most critical for 
higher-powered lenses. The vertex distance v is the 
separation between the back vertex V' of the lens and 
the apex of the cornea. For high powers, differences 
between the refracted vertex distance and the fitted 
vertex distance may require a compensation of the lens 
power using the methods described in Section 12.2. The 
stop distance h is the separation between the back 
vertex V' of the lens and the center of rotation of the 
eye at point R, about which the eye turns. The stop 
distance is often utilized for lens design calculations. 
These fitting criteria are described in Figure 9:16. 

At least some degree of pantoscopic tilt is usually 
desired for both optics and cosmetics. The bony orbits 
of the eyes actually have some degree of anatomical 
pantoscopic tilt—measured from the brow to the 
cheekbone. By ensuring that the tilt of the frame 
resembles this natural tilt, the field of view provided by 
the eyewear is maximized. For reasons discussed below, 
improper pantoscopic tilt can induce prescription errors 
(Stimson 328). 

Angle θ is the tilt of the frame, as measured from a 
plane perpendicular to the lines of sight in primary gaze. 
When the bottom rims of the frame are inclined toward 
the wearer, the frame has pantoscopic tilt. When the 
bottom rims are tilted away from the wearer, the frame 
has retroscopic tilt. These vertical tilts are illustrated in 
Figure 9:17. 
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FIGURE 9:16 Lens positioning. The stop distance h is the 
distance from the back vertex V' of the lens to the center of 
rotation at point R. The vertex distance v is the distance from 
the back vertex V' of the lens to the apex of the cornea. Angle 
θ is the tilt of the frame front, as measured from a plane 
perpendicular to the visual axis in primary gaze. 
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FIGURE 9:17 Vertical frame tilts. 

Ideally, the optical axis of the lens should pass through 
the center of rotation R. This ensures that the lens is 
perpendicular to the eye, and that the visual axis of the 
eye is coincident with the optical axis of the lens. A lens 
usually provides the best vision if the optical center is 
located a small amount below the pupil of the eye, 
because we usually look slightly downward, and with a 
small amount of pantoscopic tilt. Some pantoscopic tilt 
provides a better facial fit, since the bony orbits of the 
skull wherein the eyes rest are slightly inclined, and also 
ensures that the line of sight is nearly perpendicular to 
the lens when viewing through the optical center. 

The wrap of the entire frame around the face of the 
wearer is known as face-form tilt, or wrap. A slight 
amount of face-form tilt helps the frame contour better 
to the shape of the patient’s face. This facial tilt is 
illustrated in Figure 9:18. 
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FIGURE 9:18 Face-form tilt. 

Here is a simple rule of thumb: There should be 
approximately 2° of pantoscopic tilt for every 1 mm that 
the pupil center is located above the optical center of 
the lens (see Figure 9:16). Most commonly the optical 
center is best located 3 to 4 mm below the pupil with a 
pantoscopic tilt of 6 to 8°. 

If the optical axis of the lens does not intersect the 
center of rotation of the eye, the tilted lens may induce 
an astigmatic error. This astigmatism, which is a 
departure from the desired prescription, causes the 
following two effects which are directly proportional to 
the power of the lens (Dowaliby 185): 

1. Increased sphere power. The new sphere power 
FNEWSPH is given for a thin lens by the formula: 

EQ. 56 F
n

FNEWSPH SPH= +
⎛
⎝
⎜

⎞
⎠
⎟1

2

2sin θ
 

2. Induced cylinder power (with the same sign ± as 
the sphere power) at axis 180°. The induced 
cylinder power CNEWCYL is given for a thin lens by 
the formula: 

EQ. 57 C FINDCYL NEWSPH= ⋅ tan2 θ  

where θ is the angle of tilt, n is the refractive index of 
the lens, FSPH is the original sphere power of the lens, 
FNEWSPH is the induced sphere power, and CNEWCYL is 
the induced cylinder power. 

It is important to note that face form tilting can also 
introduce this astigmatic error. This is why face form 
should be minimal. In this case, the axis of the induced 
cylinder would be at 90°. 

Example 

The optical center of a lens is placed 5 mm below the 
line of sight. How much pantoscopic tilt is required to 
prevent an astigmatic error? 

( )θ = °2 5  

θ = °10  

∴ Pantoscopic tilt required is 10°. 

Example 

A +4.00 D lens is given 15° of pantoscopic tilt (with the 
optical center at pupil level). The index of refraction is 
1.500. What is the new sphere power and induced 
cylinder power? 

( )F NEWSPH= +
°⎛

⎝
⎜

⎞
⎠
⎟1

15
2 1500

4 00
2sin
.

.  

FNEWSPH = +
⎛
⎝⎜

⎞
⎠⎟1

0 067
3

4 00
.

.  

( )FNEWSPH = 1022 4 00. .  

FNEWSPH = +4 09.  

CINDCYL = ⋅ °4 09 152. tan  

CINDCYL = 0 29.  

∴  New sphere power is +4.09 D and the 
induced cylinder power is +0.29 D. 

Therefore, the refractive power that the patient 
effectively receives is +4.09 +0.29 D × 180. 

9.4 MINIMUM BLANK SIZE 

The dimensions of the patient’s spectacle frame and the 
position of the lenses within that frame are required to 
determine the minimum blank size for a given pair of 
eyeglasses. The minimum blank size (abbreviated 
MBS) will be the smallest circular lens diameter 
required for a particular frame and lens combination. 
Essentially, this is the smallest circle that will 
completely enclose the edged lens—once the optical 
center O has been decentered from the geometric center 
G of the frame. 

The minimum blank size is equal to twice the minimum 
radius rMBS of the decentered lens, which is the distance 
from the optical center or prism reference point, to the 
farthest point along the edge of the finished lens shape. 
As shown in Figure 9:19, the diameter of the minimum 
blank size ØMBS of a single vision lens can be estimated 
with the following rule of thumb: 

EQ. 58 dec2×+∅=∅ EDMBS  

where dec is the required decentration (Eq. 50), and ØED 
is the effective diameter of the frame. All values are 
typically given in millimeters. 
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FIGURE 9:19 Minimum blank size calculation. The 
minimum radius rMBS of the approximate minimum blank size 
is equal to the sum of the radius rED of the effective diameter 
ØED plus the decentration d. Hence, the diameter ØMBS of the 
MBS is equal to twice the minimum radius, so that ØMBS = 2 
rMBS = ØED + 2×d. 

The minimum blank size is necessary in order to 
calculate the required thickness of a lens (especially 
plus lenses) for surfacing, and to select the appropriate 
blank diameter for edging the lens into a given frame. 
This also allows the smallest possible lens blank to be 
used. For minus lenses, the MBS allows you to estimate 
the maximum edge thickness. 

To see why it is advantageous to use the smallest blank 
size possible—particularly plus lenses—consider Figure 
9:20, which depicts the center and edge thicknesses of 
two +4.00 D lenses that have been edged to the same 
frame (54-mm eyesize). One lens was made using a 
factory-finished (or stock) lens blank, which has an 
initial diameter of 75 mm. Once edged, the minimum 
edge thickness is 3.35 mm, which is quite thicker than 
desired in most cases. The other was made from a semi-
finished lens blank that has been surfaced to its absolute 
minimum thickness. The minimum edge thickness of 
this lens once edged is only 1.0 mm. (This minimum 
edge thickness is quite common, but any desired edge 
thickness could be used.) The surfaced lens is 
comparable in thickness to a stock lens that is roughly 
62-mm in diameter, which would be the minimum blank 
size for this particular frame. Note that the surfaced lens 
is roughly 32% thinner than the stock lens. 

Example 

A certain frame requires a 3-mm decentration per each 
eye and has an effective diameter of 54 mm. What is the 
minimum blank size? 

( )∅ = +MBS 54 2 3  

∅ =MBS 60  

∴ Minimum blank size is 60 mm. 

It should be noted, however, that this equation assumes, 
as is very often the case, that the lens is decentered in 
and that the farthest edge of the frame from the 
geometric center is out (i.e., temporal). 
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FIGURE 9:20 For plus lenses, the center thickness of the lens 
is dependent upon several factor, including the smallest 
possible blank size (MBS) for the frame. A) The center and 
minimum edge thickness of a stock lens is thicker than 
necessary for most edged plus lenses, unless the stock lens is 
about the same size as the MBS. B) Surfacing a plus lens 
produces the thinnest possible lens, and ensures that the 
minimum edge thickness is achieved. 

It should be apparent that this rule of thumb method 
does not consider the frame shape or the angle of the 
effective diameter. Determining the exact minimum 
radius rMBS of the lens will be more accurate, when 
possible. Plus-powered, sphero-cylindrical lenses (with 
a cylinder component) can further complicate the exact 
minimum blank diameter required, since the edge 
thickness varies around the perimeter of the lens. 
(Recall that the edge thickness serves as the limiting 
thickness factor for plus lenses). The axis of the 
cylinder—as it relates to the dimensions of the frame—
is also an important factor, as well as any prescribed 
prism. Computers are now commonly employed to 
make exact calculations of lens thickness and blank 
size, and ensure that lenses are surfaced as thin as 
possible. 
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10. Single Vision Lens Design 
This chapter describes single vision ophthalmic lens 
design, including corrected curve, aspheric, and atoric 
lenses. Earlier, it was suggested that a given lens power 
could be produced using any of a variety of lens forms 
(different base curves); as long as the combined power 
of the front and back surfaces summed to the desired 
power. However, proper selection of the base curve or 
lens design will result in better vision for the wearer. 
The fundamental advantage to using the proper base 
curve is that it results in better vision when the wearer 
looks through peripheral portions of the lens.  

10.1 OPHTHALMIC LENS ABERRATIONS 

It was stated in Section 4.1 that Snell’s law of refraction 
could be approximated to develop a simple equation for 
the power of a lens surface. This is true in a small area, 
immediately surrounding the optical axis of the lens, 
known as the paraxial region. Within this region, we 
can apply our small angle approximations to simplify 
the calculation of surface power. Within the paraxial 
region, Snell’s law of refraction is given by this 
approximation: 

sin i i≈  

The focal power of an ophthalmic lens is based upon 
this simplified system of analysis, which is often 
referred to as First-order Theory or Gaussian Optics. 
However, this simplification quickly loses accuracy at 
further distances from the optical axis, or at oblique 
angles of view. Because the focal power of an 
ophthalmic lens is only entirely accurate within the 
paraxial region about the optical axis, the prescription 
off-axis (away from, or obliquely to, the optical axis) 
will perform differently than the prescription on-axis (in 
alignment with the optical axis). When prescribing, 
producing, and verifying the power of a spectacle lens, 
the lenses are typically measured on-axis. Therefore, the 
approximations developed for paraxial power—
although not entirely precise—are quite accurate for 
practical purposes. 

To understand how rays of light behave off-axis, a more 
accurate approximation for Snell’s law can be utilized. 
If at least one additional term is added to our radian 
approximation of the angle of incidence, a more 
accurate evaluation becomes possible: 

sin  i i
i

≈ −
3

6
 

This provides us with the basis of Third-order Theory. 
Third-order Theory shows us that light striking a lens 
obliquely is not necessarily focused to a single point in 
the plane of the secondary focal point of the lens. For 
ophthalmic lenses, an optical aberration occurs when 

rays of light fail to come a point focus at the intended 
position of the far point MR of the eye as it revolves 
about its center of rotation at point R. As the eye rotates 
about its center, the far point generates a spherical 
surface, which is called the far-point sphere. For any 
direction of gaze, the far-point sphere represents the 
ideal image position. The radius rFPS of the far-point 
sphere is given by 

EQ. 59 r h fFPS = − ′  

where f' is the secondary focal length of the lens and h 
is the stop distance from the back vertex of the lens to 
the center of rotation R. 

When viewing peripherally through a lens, we want the 
focus to fall on the far point sphere. However, it should 
be apparent that the base curve, or “bending” of the 
lens, will affect its distance from the eye and its tilt 
relative to the line of sight. These factors can 
significantly alter the power that the eye encounters, 
resulting in a power that deviates from that required for 
clear vision. 

The design criteria for both plus and minus lenses are 
illustrated in Figure 10:1 and Figure 10:2. Like 
refractive errors, optical aberrations cause imperfect 
image formation and blurred vision. As the eye rotates, 
the stop distance h also describes a spherical surface 
called the vertex sphere. All measurements of off-axis 
power are referenced from the vertex sphere for 
consistency. 
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FIGURE 10:1 Lens design parameters for a plus lens. The far 
point MR is rotated about the center of rotation R, creating a 
spherical surface called the far-point sphere. The radius of the 
far-point sphere rFPS = h - f', where h is the stop distance from 
the lens to the center of rotation. 
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FIGURE 10:2 Lens design parameters for a minus lens. The 
same descriptors from plus lenses apply. 

There are five unique monochromatic aberrations, 
first enumerated by Ludwig von Seidel in 1855: 
spherical aberration, coma, oblique astigmatism, 
curvature of the field, and distortion. They are referred 
to as monochromatic, which literally means ‘single 
color,’ since they are independent of color (Freeman 
381). 

The first two aberrations, coma and spherical 
aberration, result from the fact that the power of a lens 
effectively increases away from its optical axis (or 
center). Fortunately, for spectacle lenses these two 
aberrations are minimized because the small pupil of the 
eye limits the area of the lens that admits rays of light 
into the eye at any one time. Therefore, they are 
generally not a concern for ophthalmic lens designers. 
Spherical aberration, which affects object points along 
the optical axis, is illustrated in Figure 10:3. Coma is 
similar to spherical aberration but affects object points 
off the optical the axis. 

SPHERICAL
ABERRATION

•
F'

 
FIGURE 10:3 Spherical aberration. Rays of light refracted in 
the periphery of a lens come to a different focal point than 
central rays—producing spherical aberration. The paraxial 
approximation for lens power, which assumes a focus at point 
F', loses accuracy for these peripheral rays. 

Ophthalmic lens designers are typically concerned with 
only two of Seidel’s aberrations, which are often 
considered to have greater significance to vision. 
Oblique astigmatism is one of the principal lens 
aberrations that must be corrected for when designing 
spectacle lenses. This astigmatic focusing error, which 
is illustrated in Figure 10:4, results when rays of light 

from an off-axis object strike the lens obliquely. Two 
focal lines are produced from a single object point, 
much like the regular astigmatism described in Section 
5. The dioptric difference between these two foci, FT - 
FS, is the amount of the oblique astigmatism, or the 
oblique astigmatic error A. Oblique astigmatism is 
also referred to as marginal or radial astigmatism. 
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FIGURE 10:4 Oblique astigmatism. Rays of light from an 
object point strike the lens obliquely and are focused into two 
separate line foci, instead of a single point focus, when 
oblique astigmatism is present. The dioptric difference 
between these two foci, which are referred to as the tangential 
focus FT and sagittal focus FS, represents the amount of 
astigmatic error: A = FT - FS. 

Rays of light striking the tangential, or meridional, 
plane of the lens come to a line focus at the tangential 
focus FT. The resultant focal line is perpendicular to the 
actual tangential plane. Rays striking the sagittal, or 
equatorial, plane come to a line focus at the sagittal 
focus FS. This focal line is perpendicular to the sagittal 
plane. Both of these planes are shown in Figure 10:5. 
The actual tangential power error PT is equal to the 
difference between the desired back vertex power FV 
and the tangential power FT, or PT = FV - FT. Similarly, 
the sagittal power error PS is equal to the difference 
between the desired back vertex power the sagittal 
power FS, or PS = FV - FS. Therefore, the astigmatic 
error A is also given by, A = PT - PS = FT - FS. 

Changing the base curve of a lens changes the angle 
with which the line of sight passes through the lens with 
peripheral viewing. This effectively changes the tilt 
encountered and therefore the power that is 
encountered. 

Sagittal Planes Tangential Planes

 
FIGURE 10:5 The sagittal (equatorial) and tangential 
(meridional) planes of a lens. 
The next Seidel aberration and the second aberration of 
concern to ophthalmic lens designers is curvature of 
the field. When oblique astigmatism has been 
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completely corrected (by selecting the base curve which 
does so), the astigmatic focal lines become coincident 
and the lens produces a single point focus. However, 
instead of producing a flat image, a curved image is 
produced called Petzval’s surface. Although a flat 
image surface is desired for many optical systems, such 
as cameras, the far-point sphere (or ideal image plane) 
of the eye is also curved. The radius rPS of Petzval’s 
surface is given by 

EQ. 60 r n fPS = − ⋅ ′  

where n is the refractive index of the material and f' is 
the secondary focal length of the lens. 

Unfortunately, Petzval’s surface is flatter than the far-
point sphere in most instances, which results in some 
residual focusing error as shown in Figure 10:6. The 
dioptric difference between Petzval’s surface and the 
far-point sphere of the eye is known as the power error 
of the lens. This spherical focusing error usually 
reduces the power of the lens in the periphery 
(Grosvenor 362). 

When an astigmatic error exists, the mean power error 
M is used to describe the dioptric difference between 
the far-point sphere and the average of the two 
astigmatic focal powers: M = FV - ½ (FT + FS). This is 
also equal to the average of the tangential and sagittal 
power errors, or M = ½ (PT + PS). 
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FIGURE 10:6 Curvature of the field. In the absence of 
oblique astigmatism (accomplished by selecting the base 
curve that eliminates oblique astigmatism), the tangential and 
sagittal foci coincident upon an image surface known as 
Petzval’s surface (PS). The dioptric difference between the 
far-point sphere FPS of the eye and Petzval’s surface PS for 
any given viewing angle is the amount of power error present 
through the lens. 

In the presence of oblique astigmatism, there is no true 
Petzval’s surface. As the base curve departs from the 
one that results in the Petzval’s surface, the tangential 
and sagittal foci depart from Petzval’s surface forming 
their own image shells, as shown in Figure 10:7. The 
tangential image shell deviates more rapidly from 
Petzval’s surface than the sagittal image shell.  

OPTICAL AXIS
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Tangential
SagittalShell
Shell  

FIGURE 10:7 In the presence of oblique astigmatism, the 
tangential and sagittal image shells depart from Petzval’s 
surface PS. The tangential shell deviates more rapidly. 
Distortion is an aberration that affects not the focal 
quality of an image, but its size and shape (or its 
geometric reproduction). Just as the power of a lens 
effectively increases away from the optical axis of the 
lens, so does the magnification produced by the lens. 
For plus-powered lenses, excess magnification in the 
periphery of the lens causes pincushion distortion. For 
minus-powered lenses, excess minification causes 
barrel distortion. When there is no distortion present in 
the image, the image is said to be orthoscopic, as 
illustrated in Figure 10:8. 

Pin-cushionBarrel
(Normal) Distortion Distortion

Orthoscopic

 
FIGURE 10:8 Distortion. Orthoscopy is a lack of distortion. 
Minus lenses produce barrel distortion. Plus lenses produce 
pincushion distortion. 

Distortion causes objects to appear misshapen and 
curved—especially in higher lens powers. It cannot be 
eliminated using typical base curve ranges, and is 
generally not a consideration for lens design. 

Oblique astigmatism and power error occur as the 
spectacle-wearer gazes away from the optical axis—or 
optical center—of the lens. Consequently, peripheral 
vision through a lens that suffers from an excess of 
either of these two aberrations is blurred, and the wearer 
experiences a limited field of clear vision. This is often 
the case with flatter lens forms, as we shall see later. 
This effect is illustrated in Figure 10:9 and Figure 10:10 
for a 30° angle of view from the optical axis of the lens. 

For our purposes, the viewing angle is the angle that the 
line of sight makes with the optical axis of the lens as 
the eye rotates. The eyes often make rotations of 30° or 
more—about its center of rotation R—from the optical 
axis to fixate objects within the wearer’s field of view. 



Carl Zeiss Vision  Introduction to Ophthalmic Optics 

 74

Historically, most design calculations have also been 
based upon a 30°-viewing angle (Davis 134). 
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R
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FIGURE 10:9 Clear peripheral vision at a 30° viewing angle 
with a steeper lens form. 
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FIGURE 10:10 Blurred peripheral vision at a 30° viewing 
angle with a flatter lens form. 

10.2 CORRECTED CURVE LENS DESIGN 

The selection of the form of the lens (base curve) is a 
primary tool in the reduction of lens aberrations. 
Further, the final lens form for a given power is 
determined during base curve selection. It was 
demonstrated earlier that flatter lens forms produce 
thinner and lighter weight lenses. However, flatter lens 
forms can also suffer from significant lens aberrations 
in the periphery. Table 16 demonstrates the error from 
the desired prescription—for both a +4.00 and a -4.00 D 
lens when produced upon flatter base curves. Notice 
how the prescription error increases as the base curve 
becomes flatter. 

TABLE 16 Off-axis performance 

+4.00 D Lens -4.00 D Lens 
Base 

Curve 
Prescription 
30° Off-axis 

Base 
Curve 

Prescription 
30° Off-axis 

9.00 +3.90 -0.08 4.00 -3.90 -0.10 
7.00 +4.31 -0.36 2.00 -4.01 -0.36 
5.00 +4.90 -0.79 0.50 -4.12 -0.63 

When a base curve is chosen to minimize lens 
aberrations, the resulting lens is referred to as a 
corrected curve lens. Since corrected curve lens forms 
will have the least amount of the most detrimental 
aberrations, they are also called best form lenses. 

Most of the work developing corrected curve lenses 
began in the 1800s. In 1804, William Wollaston 

developed a system of steeply bent lens forms that were 
free from oblique astigmatism. However, these lenses 
were much too steep for practical uses. In 1898, F. 
Ostwalt developed a system of lenses significantly 
flatter than Wollaston’s that were also free from oblique 
astigmatism. 

In 1909, Marius Tscherning demonstrated that there 
were two recommended best form base curves for each 
lens power. Tscherning’s ellipse, which is depicted in 
Figure 10:11, is the locus of points that plot out the 
recommended base (front) curves for each focal power. 
Consequently, it can be shown that both Wollaston’s 
and Ostwalt’s lenses can be calculated using the same 
quadratic formula. Wollaston’s branch represents the 
positive root and Ostwalt’s represents the negative root. 
For near vision, the ellipse shifts down slightly. 
Therefore, lenses utilized for reading should be roughly 
1 to 2 D flatter than those for distance. 
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FIGURE 10:11 Tscherning's ellipse for an infinite object 
distance and a 27 mm stop distance. For near object distances, 
the ellipse shifts down slightly. 

It is important to note that modern lens forms employ 
the flatter, Ostwalt branch of Tscherning’s ellipse. 
Ideally, a separate front curve would be required for 
each individual lens power to minimize lens aberrations, 
as shown in Figure 10:11. 

One of the first mass-produced series of corrected curve 
lenses was the Zeiss Punktal lens series, which was first 
released in 1913. These lenses utilized a separate base 
(front) curve for every prescription, which required a 
massive, costly inventory. In the 1920s, American 
Optical introduced their own Tillyer series of corrected 
curve lenses that was named after its designer, Edgar 
Tillyer. Tillyer grouped small ranges of prescriptions 
together upon common semi-finished blanks to keep 
costs and inventories down to a minimum. His series 
employed only 19 base curves. Soon, other 
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manufacturers followed with their own versions of 
corrected curve lens series (Fannin & Grosvenor 147).*  

There is no definitive best form base curve. The base 
curve recommended by a particular manufacturer, for a 
given prescription range, will depend upon which lens 
aberration(s) that manufacturer is trying to eliminate or 
minimize. Therefore, different manufacturers may 
produce differing base curves for similar prescription 
ranges. Manufacturers may choose between various 
design philosophies (or merit functions) to determine 
which aberrations to minimize or eliminate. 
Unfortunately, it is not possible to eliminate all of these 
lens aberrations completely at once. Here are some of 
the most common design philosophies: 

• Eliminate oblique astigmatism: To eliminate the 
oblique astigmatic error A, the tangential power PT 
of the lens must be equal to the sagittal power, so 
that PT = PS or FT = FS. Such a lens is referred to as 
a point-focal lens form. 

• Eliminate mean power error: To eliminate the 
mean (or average) power error M, the average of 
the tangential and sagittal powers of the lens must 
be equal to the desired back vertex power, so that ½ 
(FT + FS) = FV. Such a lens is referred to as a 
Percival lens form. 

• Eliminate tangential error: To eliminate the 
tangential error PT, the tangential power must be 
equal to the desired back vertex power, so that FT = 
FV. This design philosophy was originally 
employed in the 1960s for the AO Tillyer 
Masterpiece series (Davis 19). 

• Eliminate RMS error: The RMS, or root-mean-
square, power error is a scalar measure of both the 
astigmatic error (A) and mean power error (M). The RMS 
power error P is a useful predictor of blur and visual 
acuity that combines the two errors into a single, 
meaningful measure of defocus: 

( )2
2
12 AMP +=  

Note that the astigmatic error A is weighted by a 
factor of ½. Recall from Section 6.5, that a purely 
astigmatic error produces half as much blur as a 
spherical error of the same magnitude. We can also 
substitute the relationships that the astigmatic and 

                                                           
* It is also important to note that reducing the number 
of base curves utilized for a given range of lens powers 
also reduces the accuracy of the off-axis correction of 
the lens series. Recall that, ideally, each lens power 
requires its own front curve. However, the magnitude of 
the errors created by having a single base curve serve a 
limited range of powers is relatively small. 

mean power errors have to the tangential and 
sagittal power errors (PT and PS) into the above 
equation to yield, 
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Consequently, in order to eliminate the RMS power 
error, the square root of the average of the squared 
power errors (PT

2 and PS
2) must be zero. 

Note that you can only choose one of these merit 
functions at a time. Further, recall that you can not 
eliminate all errors simultaneously. Correcting any one 
aberration entirely still leaves a residual error in the 
others. For instance, consider Figure 10:12, which 
demonstrates the tradeoffs. 
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FIGURE 10:12 The off-axis performance for a +4.00 D lens 
at a 30° viewing angle. The tangential and sagittal power 
errors (PT and PS) have been plotted against a range of front 
curves. 

This is a graph of the tangential and sagittal power 
errors (PT and PS) of a +4.00 D lens—at a 30° viewing 
angle—plotted against a range of front curves. Oblique 
astigmatism is eliminated with a front curve of 9.75 D, 
since the tangential and sagittal errors are equal for that 
curve. Note that there is still some residual power error. 
The mean power error is eliminated with a front curve 
of 8.00 D, since the average of the tangential and 
sagittal errors is equal to zero. Note that there is still 
some residual astigmatic error. The tangential error is 
eliminated with a front curve of 8.50 D, since the 
tangential error is zero with that front curve. There is 
still some residual astigmatic and mean power error, 
though. For this particular power, a well designed 
corrected curve lens will probably utilize a front curve 
between 8 to 10 D—depending upon the design 
philosophy and merit function of the manufacturer. 
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Recall that best form, or corrected curve, lenses use the 
optimum base curve for optical performance. It should 
now be obvious that the lens forms we would choose 
for good cosmetics (i.e., flatter lenses), provide poor 
optical performance in the periphery. This is the 
primary conflict that lens designers have to balance 
when designing ophthalmic lenses: optical performance 
versus cosmetics. 

Table 17 shows typical base curve selection guidelines 
for producing best form lenses. Today, most base curve 
series have at most six or seven base curves. For lenses 
with cylinder power, the spherical equivalent should be 
used to determine the appropriate base curve. Above 
about +8.00 D, conventional base curves are no longer 
effective. (Note that Tscherning’s ellipse does not pass 
this power range.) 

TABLE 17 A typical base curve selection chart 

Power Range (D) Base Curve (D) 
+8.00 to +4.75 10.00 
+2.25 to +4.50 8.00 
+2.00 to -2.00 6.00 
-2.25 to -4.00 4.00 
-4.25 to -7.00 2.50 

-7.25 to -12.00 0.50 

10.3 ASPHERIC LENS DESIGN 

Fortunately, lens designers have another tool at their 
disposal when designing lenses: asphericity. As the 
name implies, an aspheric surface is a surface that 
departs from being perfectly spherical. Aspheric 
surfaces are rotationally-symmetrical surfaces that 
gradually vary in surface power from the center towards 
the edge, in a radial fashion. This change in surface 
power produces surface astigmatism that can 
counteract and neutralize the oblique astigmatism. 
Aspheric surfaces free lens designers from the 
constraints of best form lenses. Lenses can be made 
flatter, thinner, and lighter, while maintaining excellent 
optical performance. 

Aspheric lenses were originally employed to provide 
acceptable vision in high-plus, post-cataract lenses, 
which generally exceed the +8.00 D limit of 
Tscherning’s ellipse. We can see from the schematic 
eye (Table 6) that the crystalline lens is responsible for 
nearly a third of the refracting power of the eye. When 
the lens is removed from the eye as a result of a 
cataract (opacity of the crystalline lens), extremely 
high-plus spectacle lenses can be used to supplement 
the loss of refracting power. 

Because of surgical advances and intraocular lens 
implants, such lenses are now all but obsolete. Today, 
aspheric surfaces are mainly used to allow lens 
designers to produce flatter, thinner lenses with the 

superior optical performance of the steeper corrected 
curve, or best form, lenses. 

To produce a three-dimensional aspheric surface, an 
aspheric curve is rotated about an axis of symmetry. 
The central curvature, or vertex curvature, of an 
aspheric surface will be nearly spherical. The vertex 
curvature of an aspheric surface will be the front curve 
value utilized for lens power and surfacing calculations. 
Away from the vertex curvature, the amount of surface 
astigmatism smoothly increases. The rate of increase in 
surface astigmatism depends upon the degree of 
asphericity. Figure 10:13 demonstrates the surface 
produced by rotating an ellipse about an axis of 
symmetry. Notice the changing radii of curvature in 
both the tangential and sagittal meridians (Jalie 516). 
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FIGURE 10:13 This elliptical curve has a radius of curvature 
that gradually changes away from the center. Once the ellipse 
has been rotated about the axis of symmetry AA', it produces 
a three-dimensional conicoid surface. The tangential radius of 
curvature, from point CTAN, is longer than the sagittal radius 
of curvature, from point CSAG. This results in both a change in 
surface power and astigmatism that is utilized to control lens 
aberrations. 

Original aspheric designs utilized conicoid surfaces, 
produced by rotating a conic section about an axis of 
symmetry to produce a three-dimensional surface.  The 
conic section could be any one of five from the family 
of conics, including the circle, prolate ellipse, oblate 
ellipse, hyperbola, and parabola. These conic sections 
are illustrated in Figure 10:14. 

Conicoid surfaces can be described by the following 
formula (Jalie 517): 
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where z is the height of the surface, RS is the vertex 
curvature, x is the semi-diameter of the lens, and p is a 
value that controls the amount/degree of asphericity (or 
eccentricity of the conic focus) for the surface. 
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FIGURE 10:14 The family of conic sections includes the 
circle (p-value of 1), oblate ellipse (p-value > 1), prolate 
ellipse (0 < p-value < 1), parabola (p-value = 0), and 
hyperbola (p-value < 0). 

Modern aspheric lenses often employ higher order 
surfaces that allow for more complex shapes than the 
simple conic sections. These lenses can be described by 
polynomial functions of the form: 

EQ. 62 ( )z f x ax bx cx= = + + +2 4 6 K  

where z is the height of the surface; x is the semi-
diameter of the lens; and a, b, and c are all coefficients 
that control the shape of the surface. 

Surfaces described by this type of polynomial equation 
can be deformed conicoid surfaces or surfaces of even 
greater complexity. The first coefficient (a) in many of 
these polynomial equations describes the vertex 
curvature, and is either given by equation Eq. 61 or by 

a
RS=
2

 

Once the first coefficient a has been determined, the 
final coefficients are then determined by ‘ray tracing’ 
procedures that refine the off-axis performance of the 
lens for various viewing angles. Many designers chose 
to optimize the off-axis performance of a lens out to at 
least 30° to 35°. 

Unfortunately, because of the fact that the curvature of 
an aspheric surface varies away from the center, normal 
measuring instruments such as the lens clock cannot 
measure the front curve value—or vertex curvature—of 
an aspheric lens accurately. The wider the spacing 
between the pins, or the wider the diameter of the sag 
gauge bell, the less accurate the instrument becomes for 
measuring aspheric surfaces. Moreover, because the 
asphericity of many of these surfaces varies only subtly 
away from the center of the lens, it is often equally 
difficult to detect asphericity using such instruments. 

Most aspheric lenses are designed to allow use of a 
flatter, more cosmetically pleasing lens, while 
minimizing off-axis aberrations. Since flattening a lens 
introduces astigmatic and power errors, the peripheral 
curvature of the aspheric surface should change in a 
manner that neutralizes this effect. For instance, plus 
lenses with asphericity on the front surface require a 
flattening of curvature away from the center of the lens 
to reduce the effective gain in oblique power and 
astigmatic error. Asphericity on the back surface of a 
plus lens will require a steepening of curvature away 
from the center of the lens. The opposite holds true for 
minus lenses. 

Aspheric lenses are generally more sensitive to the 
range of prescriptions that they have been optimized 
for. Consequently, aspheric lenses typically have more 
base curves available, in smaller increments of surface 
power. Proper base curve selection, as recommended by 
the manufacturer, is critical. 

The further a lens form is flattened from its optimum, 
best form base (spherical) base curve, the more 
asphericity (or surface astigmatism) will be required to 
properly compensate for the off-axis optics. 

We now know that flatter base curves produce thinner 
lenses (refer back to Section 7.2). It is interesting to 
note that the actual geometry of an aspheric surface also 
helps reduce lens thickness. This is a consequence of 
the fact that the sagitta of an aspheric surface differs 
from the sagitta of a spherical surface. Consider the 
comparison made in Figure 10:15. At a given diameter, 
the aspheric surface has a shallower sagitta than the 
spherical surface and therefore a reduced plate height. 
The thickness reduction is maximized when the surface 
with the highest surface power is made aspheric (Jalie 
340). 

Spherical

Aspherical
Sag Difference

Height

Vertex
Curvature

 
FIGURE 10:15 Difference in sags between spherical and 
aspherical convex curves. For a given diameter the aspheric 
surface is shallower than the spherical surface. 

We can now compare the physical and optical 
properties of a steep best form lens, a flat lens with a 
spherical base curve, and a flat aspheric lens. Careful 
consideration of Table 18 shows that a best form lens 
(+4.00 D) can be produced having no astigmatic error 
and very little mean power error. A flat lens can also be 
made, which would be cosmetically superior, but would 
suffer significant astigmatic and mean power errors. 
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However, using an aspheric front surface, a lens can be 
produced that eliminates the astigmatic error while 
providing an even thinner center. 

TABLE 18 +4.00 D lens design comparison 

+4.00 D Lens Design Comparison*
 Best 

Form 
Lens 

Flat 
Lens 

Aspheric
Lens 

p = -11.60 
Front Curve 9.75 4.25 4.25
Center Thickness 6.6 5.9 5.1
Weight (grams) 20.6 17.7 14.8
Plate Height 13.7 6.0 5.1
Astigmatic Error 0.00 0.99 0.00
Mean Power Error -0.22 0.68 -0.23

* These are CR-39 lenses that have been computed with a 70-
mm diameter, a 1-mm edge, and a 30° viewing angle. 

Since the geometry of an aspheric surface can reduce 
the thickness of a lens, it becomes possible to use 
asphericity strictly for cosmetic purposes. By producing 
a highly aspherical surface with a rapid change in 
curvature towards the periphery of the lens, the sagitta 
of the surface can be made much shallower. 

The aspheric surface of the Hi-Drop cataract lens, for 
instance, which is shown in Figure 10:16, rapidly drops 
between 3 to 4 diopters from the center of the lens to its 
edge to produce an extremely thin profile. This type of 
lens is called a zonal aspheric, because of its zones of 
changing surface power. 
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FIGURE 10:16 Decrease in surface power away from the 
center of a Hi-Drop lens. 

When asphericity is ‘exaggerated’ in this fashion, the 
off-axis optics are generally poor—since the lens has 
been optimized solely for cosmetics, with little regard 
for optics. Another problem with making lenses too flat 
is that they do not provide enough clearance for the 
eyelashes. 

In addition to aspheric lenses strictly optimized for 
optics and lenses strictly optimized for cosmetics, there 
are aspheric lenses available that combine the benefits 
of both. The surface of certain continuous-surface 
aspheric lenses is optimized out to a certain point across 

for optics, and then drops off rapidly in curvature to the 
edge for cosmetics. 

10.4 ATORIC LENSES 

As described above, each focal power requires its own 
lens form to accurately correct for lens aberrations. 
Consequently, lenses with cylinder power are not 
entirely corrected using conventional lens designs. The 
lens designer may choose the optimum front curve 
based upon the sphere meridian, the cylinder meridian, 
or the average power (spherical equivalent) of the lens. 
For lenses with low cylinder power, the differences are 
generally negligible. For higher cylinder powers, 
though, the errors can be significant resulting in a 
reduced field of clear vision. 

Advances in lens design have provided lens designers 
with the ability to produce surfaces even more complex 
than the rotationally-symmetric aspheric designs 
described earlier. By varying the degree of asphericity 
from one meridian of the lens to another, an atoric 
surface can be produced. This allows designers to 
optimize the lens for both the sphere and cylinder 
powers, by applying customized asphericity to each 
power. Just as ‘aspheric’ denotes a surface that departs 
from being completely spherical, ‘atoric’ denotes a 
surface that departs from being an exact circular toric. 
Figure 10:17 depicts a possible atoric surface. 
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FIGURE 10:17 An atoric surface with unique amounts of 
asphericity individually applied to the sphere and cylinder 
meridians of the lens. 

Rather than being rotationally-symmetrical—like an 
aspheric—atoric surfaces are symmetrical with respect 
to two planes of symmetry coincident with the principal 
meridians of the lens, like a toroidal surface. The 
curvatures in these two planes, which are also 
perpendicular to each other like a toroid, are not circular 
like a toroid, however. They can be conic in shape, or 
use of higher order polynomial curves. 

Atoricity is an extension of aspheric technology, 
allowing lens designers to optimize for both the sphere 
and cylinder powers of a lens. This ensures a more 
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accurate refractive correction over wider fields of view 
for those with astigmatism. Let’s look at the differences 
between best form (spherical base curve), aspheric, and 
atoric optimization strategies using an actual example. 
Figure 10:19 represents the relative asphericity of these 
three different lens designs for an astigmatic correction: 
+2.00 DS -1.00 DC × 090.  

Figure 10:18 is a comparison between the error-free 
fields of view of a flattened lens with a spherical base 
curve, an aspheric lens, and an atoric lens—each with -
2.00 D of cylinder power. 

Spherical Aspheric Atoric  
FIGURE 10:18 Atoric field of view comparison; +4.00 DS -
2.00 DC × 090 polycarbonate lenses with 4.85 D base curves. 
The first lens is a flattened spherical lens, the second lens is an 
aspheric, and the third lens is an atoric. The white area 
represents the field of error-free optics. 

These values—which represent conic p-values—
describe the relative departure of the surface from a 
perfect circle through each meridian, and can be thought 
of as the amount of asphericity present through that 
meridian. The further this value departs from 1.0, the 
more aspheric (or non-circular) the curvature of the 
surface is through that meridian. 

There is also a class of lens surfaces that has no 
particular symmetry. These surfaces are complex, free-
form surfaces that can optimize for both the sphere and 
cylinder powers, as well as additional factors—like 
optical errors introduced while looking through the near 
zone of certain lenses. Currently, such surfaces have 
been employed mainly on the back surface of certain 
progressive addition lenses. In fact, these surfaces share 
the same complexity that progressive surfaces do 
(Section 11.3). 
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FIGURE 10:19 Relative asphericity (a conic p-value) through 
each meridian of the lens for three different designs; +2.00 DS 
-2.00 DC × 090. A) The base curve of the best form lens is 
perfectly spherical in every meridian with a p-value of 1. B) 
The asphericity of an aspheric lens also remains the same in 
every meridian. A hyperboloidal p-value of -3 has been 
chosen to optimize for the sphere meridian. C) The relative 
asphericity of an atoric lens changes from meridian to 
meridian—optimizing for both the sphere and cylinder powers 
of the lens. The p-values vary from a minimum of -0.5—
through the cyl meridian, to a maximum of -3.0—through the 
sphere meridian. 
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11. Multifocal Lens Design 
It should be apparent that the primary purpose of a 
multifocal lens is to supplement—or replace, if 
necessary—the loss of accommodation that was once 
provided by the eye to bring near objects into focus. 
This loss of accommodation is usually age-related, in 
which case the condition is called presbyopia.  
However, multifocals are also sometimes used in 
younger patients for accommodative or binocular vision 
disorders, such as accommodative esotropia. Multifocal 
lenses include bifocals (with two focal powers), 
trifocals (with three focal powers), and progressive 
addition lenses (with a continuously varying focal 
power from distance to near). 

11.1 CONVENTIONAL MULTIFOCALS 

Recall that light rays from an object located at the 
primary focal point will be rendered parallel after 
refraction through the lens. That is, an object at the 
primary focal point is conjugate with an image at optical 
infinity (∞). Figure 11:1 demonstrates how a bifocal 
lens can completely replace the need for 
accommodation, if necessary, by rendering diverging 
rays of light from near objects completely parallel as 
they pass through the segment. This produces an object 
located at infinity for the distance—or major—portion 
of the lens, which then brings it to a focus at the 
secondary focal point F' (as well as the far point of the 
eye). 
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•
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Major
portion

Segment
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FIGURE 11:1 Bifocal correction. The diverging rays of light 
from a near object, positioned at the primary focal length of 
the lens through the bifocal segment, are rendered parallel and 
hence properly focused on the retina after refraction through 
the major portion of the lens. For this plastic lens, the add 
power is produced by a difference in the surface powers of the 
major portion and the segment. 

For presbyopes that still possess a sufficient amount of 
accommodation, the add power of the segment is 
prescribed in order to supplement the remaining 
accommodation, not necessarily to replace it. Recall 
from Section 6.4 that the add power of a spectacle Rx is 

prescribed by considering the wearer’s amplitude of 
accommodation—i.e., how much remains. 

Bifocal segments act like small lenses fastened to the 
major (distance) portion of the lens. The segment 
surface of a plastic bifocal is cast in the mold. The 
curvature of the segment will be steeper than the 
curvature of the major portion by the amount needed to 
produce a difference in surface powers equal to the add 
power, as illustrated in Figure 11:1. Therefore, the add 
power is given by Add = FS - F1, where F1 and FS are 
the surface powers of the major portion and segment, 
respectively. For instance, a +6.00 D surface power in 
the major portion combined with a +8.00 D surface 
power in the segment will yield an add power of +8.00 - 
6.00 = +2.00 D. 

Measuring the add power of multifocal lenses is 
discussed in Section 4.5. For glass lenses, a segment 
made from a higher-index glass lens material is fused 
into the major portion of the lens. The gain in surface 
powers, caused by the increased refractive index of the 
segment at the interfaces between air and the segment 
front and between the segment and major portion, 
produces the desired add power. Both types of lenses 
(glass and plastic) are shown in Figure 11:2. 

A B C D

Fused Glass Plastic

High-index
glass

 
FIGURE 11:2 A) Glass major portion with a countersink 
curve ground into it; B) Major portion with a high-index glass 
segment button fused into the countersink curve; and C) 
Completed bifocal lens after grinding and polishing the excess 
button. D) Plastic, one-piece bifocal created by molding a 
steeper curvature in the segment area of the lens. 

Trifocals add a second segment, as shown in Figure 
11:3, directly above the bifocal segment, for 
intermediate vision. The range of vision through the 
lens, which is how close or how far away an object can 
be held while remaining in focus through the various 
zones of the lens, decreases as the add power increases 
with conventional bifocals. The second, upper segment 
of a trifocal provides an intermediate power that 
effectively increases the range of vision through the 
lens, by providing a weaker power for distances that fall 
in between the distance and near corrections. This is 
often called mid-range vision. 



Carl Zeiss Vision  Introduction to Ophthalmic Optics 

 81

NEAR

INTERMEDIATE

DISTANCE

 
FIGURE 11:3 The trifocal. 

Mid-range vision generally covers the distance range 
between 40 cm and 200 cm from the eye, with a 
distance of 63 cm serving as a convenient reference 
standard. The ranges of vision for both bifocal and 
trifocal lenses have been illustrated in Figure 11:4. A 
loss of intermediate vision occurs with higher add 
powers for two reasons: 

1) As the add power increases the range of clear 
vision through the segment decreases, since objects 
beyond the primary focal length of the  bifocal 
become increasingly out-of-focus. This focal length 
distance is given by 1 ÷ add power. For a +2.50 D 
add, for instance, objects beyond 40 cm (0.4 m) 
will be blurred (1 / 2.50 = 0.4). 

2) Higher add powers generally indicate lower 
amplitudes of accommodation, which means that 
the eye can not bring near objects into focus as 
readily through the distance portion of the lens. 
Higher reserves of accommodation, on the other 
hand, allow a person to increase the plus power of 
the eye to some extent using accommodation. This 
allows objects nearer than optical infinity to be 
brought into focus somewhat. 

Near
Object

Bifocal

Blurred
Intermediate
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A  
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Intermediate
Object

Distance
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B  
FIGURE 11:4 A) The intermediate vision of a bifocal 
becomes blurred as the add power increases, leaving the 
wearer with a gap in the range of vision afforded by the 
lenses. B) Trifocal lenses have an additional segment that 
provides intermediate vision for mid-range distances. 

The intermediate power of most plastic trifocals is 
approximately 50% of the add power. For glass lenses, 
the intermediate power may vary slightly, depending 
upon the high-index glass materials utilized for the 
segments. In some cases, special intermediate powers 
may be ordered to accommodate unusual occupational 
or recreational working distances. In general, though, 
trifocals are only a small fraction of the multifocal 
market. 

Example 

To understand why a trifocal is necessary, consider a 
presbyope with 0.50 D of accommodation. To read at 
40 cm, this presbyope would likely receive a +2.25 D 
add power. The maximum linear extent to which the 
presbyope can read through his/her segment with this 
add power is about 1 / 2.25 = 0.44 m (44 cm). Past 44 
cm, objects blur through the segment. Through the 
distance portion, our presbyope can see clearly from 
optical infinity to about 1 / 0.50 = 2.0 m (200 cm). The 
gap in the range of vision between 44 and 200 
centimeters represents blurred mid-range vision, which 
can be recovered with a trifocal lens. 

11.2 MULTIFOCAL OPTICAL PROPERTIES 

A multifocal segment behaves optically like a small lens 
mounted to the major distance portion. The multifocal 
segment has its own optical center and axis, as 
illustrated in Figure 11:5. Recall from Section 4.2 that 
the optical axis of a lens is the reference axis joining the 
centers of curvature of the front and back surfaces. This 
also holds true for the multifocal segment when 
considered as an individual lens.  Of course, however, 
the total optical power at that portion of the lens also 
includes the refractive effects of the distance lens. This 
is why the power of the segment, by itself, is called an 
add—it is in addition to the distance power of the lens. 

CSEG

CDIST

•

•

OPTICAL AXIS
SEGMENT•O'

 
FIGURE 11:5 The optical axis of a multifocal segment is the 
line connecting the centers of curvature of the segment and the 
major portion containing the segment (CSEG and CDIST). The 
segment optical center O' is the vertex of the segment 
intersected by the optical axis of the segment. 

Bifocal and trifocal segments are available in a variety 
of sizes and shapes. Some common bifocal styles, along 
with the optical center and size of each segment are 
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shown in Figure 11:6. Many trifocal segments use 
similar shapes. In addition to these conventional styles, 
there are dozens of other styles available to meet 
various occupational and recreational needs. 

It is also important to note that in most situations, you 
can not actually locate the segment optical center of a 
multifocal lens using a focimeter. Most focimeters can 
only be used to measure the combined prismatic effects 
of both the major (distance) portion and the segment. 
When the optical center of a multifocal segment has 
been located in this fashion, it is actually the resultant 
optical center. This is the location where the net 
prismatic effects of the major portion and the segment 
total zero. 

The add power of a multifocal is the difference between 
the front vertex powers of the segment and the 
distance/major portion of the lens. To verify the front 
vertex power, both the segment and the distance portion 
should be measured with the front surface (containing 
the segment) against the lens stop of the focimeter. This 
is especially critical for plus lenses, where the center 
thickness and curvature of the lens can produce 
significant differences between front and back vertex 
power measurements. A measurement is first taken in 
the major portion, and then a second measurement is 
taken within the segment; the difference yielding the 
add power. 
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FIGURE 11:6 Some common bifocal sizes and shapes. Point 
G is the geometric center of the lens blank and point O' is the 
optical center of the segment. 

One phenomenon produced by conventional multifocals 
is a prismatic effect called differential image 
displacement, or image jump. This is an apparent 
displacement of an object as the eye crosses the top 

edge of the segment, as shown in Figure 11:8. Another 
consequence of this effect is a blind area, or scotoma, 
in which objects temporarily appear to collapse—or 
partially disappear (Rubin 272). 
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FIGURE 11:7 Differential image displacement and near 
scotoma. Ray 1 is passing through the major portion, 
immediately above the segment. Ray 2 is passing through the 
segment, above the optical center. Because of the base down 
prismatic effect of the segment, ray 2 is deflected downwards. 
This causes the image to jump, and results in a blind area 
between rays 1 and 2. 

These two optical phenomena are consequences of the 
fact that a multifocal segment acts like a small lens, and 
produces its own prismatic effect separate from that of 
the distance portion. In Figure 11:8, the scotoma from 
the wearer’s perspective has been illustrated. Note that a 
portion of the letter is missing as the wearer crosses into 
the bifocal line. 

 
FIGURE 11:8 Differential image displacement and near 
scotoma. As the flat-top bifocal is moved over the object, the 
image of the lower portion of the object is displaced up (and 
magnified) from the prismatic effect of the segment. This 
causes objects to appear to jump as the wearer moves into the 
segment portion of the lens. Although this hasn’t been 
illustrated here, the wearer actually perceives a double image 
of the object as the pupil crosses the edge of the segment. This 
occurs because light rays passing through both the segment 
and major portion of the lens enter into the pupil as it crosses 
segment border. 

The image jump ΔJUMP, in prism diopters, can be found 
using the add power FADD of our small segment lens and 
Prentice’s rule: 

EQ. 63 Δ JUMP ADDd F= ⋅  
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where d is the distance from the top edge (or border) to 
the optical center O' of the segment in centimeters. 

Example 

A flat-top 28-mm bifocal has an add power of 2.50 D 
and a segment optical center 5 mm (0.5 cm) below the 
top edge. How much image jump is produced? 

( )Δ JUMP = 0 5 2 50. .  

Δ JUMP = 125.  

∴ Image jump is 1.25Δ. 

It should now be apparent that the farther the segment 
optical center of a multifocal is from the top of the 
segment, the more pronounced these effects become and 
vice versa. A multifocal lens like the E-line style (full 
width segment), which has its segment optical center 
located on the segment border, does not produce any 
image jump. 

11.3 PROGRESSIVE ADDITION LENSES 

The concept of a progressive addition lens (PAL) has 
been around since Owen Aves first patented such a lens 
in 1907. Although early progressive lenses were rather 
crude in design, they have consistently improved in 
both performance and sales over the past few decades. 
Conventional progressive addition lenses are one-piece 
lenses that vary gradually in front surface curvature 
from a minimum value in the upper, distance portion, to 
a maximum value in the lower, near portion (Wakefield 
107). 
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FIGURE 11:9 Cross-sectional representation of a progressive 
lens surface. The shorter radius of curvature in the near 
portion at point CNEAR provides a stronger surface power than 
the longer radius of the distance portion at point CDIST. In 
between these two points, the radii vary gradually to provide a 
smooth power change. 
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FIGURE 11:10 The change in curvature down the front 
surface of a progressive addition lens. 

Figure 11:9 and Figure 11:10 show the gradual increase 
in curvature and surface power towards the lower, near 
portion. The result is a smooth, continuous increase in 
surface power that provides the necessary add power, 
without any visible lines of demarcation or abrupt 
disturbances of vision. 

A typical, general-purpose progressive lens is often 
described as having three distinct zones of vision: 

1. Distance. A stabilized zone located in the upper 
portion of the lens, which provides the necessary 
distance correction. 

2. Near. A stabilized zone in the lower portion of the 
lens, which provides the required near addition (or 
add power). 

3. Intermediate. A ‘corridor’ in the central portion of 
the lens connects these two zones; increasing 
progressively in plus power from the distance to 
near for mid-range vision. 

These three zones of vision blend together seamlessly, 
providing the wearer with a continuous range of vision 
from near to far, as illustrated in Figure 11:11. 

 
FIGURE 11:11 The three ranges of vision through a 
progressive addition lens. 

Several methods exist for evaluating the optics of 
progressive addition lenses. One particularly convenient 
method of describing progressive lens surfaces is with 
contour plots. Contour plots are similar to 
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topographical maps, and use lines connecting points of 
equal power on the lens surface. Each contour 
line/shade represents an increasing level of power at a 
given interval, typically 0.50 D. 

The gradual increase in power provided by a 
progressive lens surface can be described by either a 
mean power plot or a power profile plot. Both 
quantify the change in power, either by mapping the 
zones of increasing power, or by plotting it as the power 
changes along the progressive corridor (or umbilical 
line). The lens depicted in Figure 11:12 has a +2.00 D 
add power.  

Contour plots can be a useful tool for analyzing and 
comparing the optics of progressive addition lenses. 
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FIGURE 11:12 A contour plot is similar to a topographical 
map. This mean power plot shows the gradual increase in plus 
power towards the near portion of the lens. Each contour level 
represents 0.50 D of additional plus power. The four contour 
levels of this lens confirm the +2.00 D add power. 

Progressive addition lenses offer the following 
advantages over conventional multifocals: 

• No visible segments or lines of demarcation—
provides more cosmetically appealing lenses with 
continuous vision, free from visually distracting 
borders; 

• Clear vision at all distances—provides vision that 
more closely resembles the lost accommodation of 
the eyes; and 

• No unwanted differential image displacement—or 
jump—ensures that there are no abrupt disturbances 
of vision. 

There are an infinite number of possible ways to design 
a PAL. Every progressive lens design requires a 
globally smooth surface that provides a gradual 
transition in curvature from the distance portion down 
into the near portion. Further, this gradual blending of 
curvature means that the add power is gradually 
changing across a large area of the lens surface, not just 
at the bottom (see Figure 11:12). 

Unfortunately, this change in curvature results in an 
inevitable consequence: unwanted surface 

astigmatism. Surface astigmatism produces an 
unwanted astigmatic error (or cylinder error) that 
can, in sufficient quantities, blur vision and limit the 
wearer’s field of clear vision. Therefore, this astigmatic 
error essentially serves as a boundary for the various 
zones on the progressive lens surface. By design, the 
areas of unwanted astigmatism are located in the lower 
quadrants, lateral to the corridor and the near area, 
where they will be least noticeable or bothersome to the 
wearer. 

The unwanted astigmatism, which is a consequence of 
the lens design, is influenced by: 

• Add power. The amount of astigmatism will be 
proportional to the add power of the lens. A +2.00 
D add, for example, will generally produce twice as 
much astigmatic error as a +1.00 D add. 

• Length of the progressive corridor. The area of 
the lens which generally connects the distance area 
and the near area and which contains the power 
progression is referred to as the corridor Shorter 
corridors produce more rapid power changes along 
the corridor and higher levels of astigmatism. This 
reduces the eye movement required to reach the 
near zone. Longer corridors provide more gradual 
power changes and lower levels of unwanted 
astigmatism, but increase the eye movement 
required to reach the near zone of the lens. 

• Width of the distance and near zones. Wider 
distance and near zones, which have the advantages 
of wider fields of clear vision, confine the 
astigmatism to smaller regions of the lens surface, 
but produce higher magnitudes of unwanted 
astigmatism. Narrower distance and near zones 
have the opposite effects. 

A well-designed progressive lens will reduce the 
amount of astigmatic error to its mathematical limits for 
a given design. During the design and optimization 
process, various parameters are adjusted to control and 
manipulate the distribution and magnitude of this 
astigmatic error across the progressive lens surface. The 
width of the near and distance zones, and the length of 
the progressive corridor, are the chief parameters that 
are altered, as shown in Figure 11:13. 

In order for the lens to have a usable progressive 
corridor and near zone, the unwanted astigmatism 
produced by the change in curvature along the umbilical 
line needs to be minimized. To achieve this, any 
horizontal section of the progressive corridor and near 
zone should have nearly the same surface power as the 
vertical section at that point. This will ensure that the 
area appears nearly spherical to the eye. Away from the 
central umbilic, the curvature is adjusted to produce a 

Mean Plus Power
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smooth, continuous surface from the distance zone 
down to the near zone (Smith & Atchison 147). 

wD

wN

y

 
FIGURE 11:13 Line wD is the width of the distance zone at a 
specified height; wN is the width of the near zone at a specific 
depth; and y is the length of the progressive corridor (or 
umbilical line) connecting them. 

To better understand how the length of the progressive 
corridor and the add power can affect the rate of change 
(and hence the magnitude of the astigmatic error), the 
approximate change in add power—per millimeter—is 
given by (Jalie 20): 

EQ. 64 ΔF
F

y
ADD=  

where ΔF is the increase in power for every 1 
millimeter in diopters, FADD is the add power of the 
lens, and y is the length of the corridor in millimeters. 

Consequently, the power of a progressive lens surface 
changes more rapidly down the progressive corridor as 
the add power increases, or as the length of the 
progressive corridor decreases. The magnitude, 
distribution, and rate of change (or gradient) of 
resulting astigmatism are all performance factors that 
can affect the wearer’s acceptance of the lens. 

Example 

A certain PAL has a +2.00 D add, and a corridor length 
of 17 mm. What is the approximate increase in add 
power for every one millimeter? 

ΔF =
2 00
17
.

 

ΔF = 0118.  

∴ Power changes 0.12 D every 1 mm. 

Progressive lenses are often arbitrarily classified into 
two broad categories, or design philosophies, by the 
relative magnitude, distribution, and gradients of their 
surface astigmatism. (The gradient is the rate of change 
of power and unwanted astigmatism.) These various 
characteristics describe the relative hardness of the 
design. Lenses within each category show broad 

similarities in the magnitude, distribution, and gradient 
of their surface astigmatism (or hardness): 

• Harder Designs. A harder PAL design 
concentrates the astigmatic error into smaller areas 
of the lens surface, thereby expanding the areas of 
perfectly clear vision at the expense of higher 
levels of blur and distortion. Consequently, harder 
PAL designs generally exhibit four characteristics 
when compared to softer designs: wider distance 
zones; wider near zones; shorter narrower 
corridors; and higher, more rapidly increasing 
levels of astigmatic error (i.e., higher gradients). 

The astigmatic error produced by a harder 
progressive lens design is demonstrated with the 
surface astigmatism plot in Figure 11:14. This 
contour plot is in 0.50 D levels of cylinder. A 
power profile plot next to it illustrates the shorter 
corridor length. 
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FIGURE 11:14 Relatively ‘hard’ PAL design. 

• Softer Designs. A softer PAL design spreads the 
astigmatic error across larger areas of the lens 
surface, thereby reducing the overall magnitude of 
blur at the expense of narrowing the zones of 
perfectly clear vision. The astigmatic error may 
even encroach well into the distance zone. 
Consequently, softer PALs generally exhibit four 
characteristics when compared to harder designs: 
narrower distance zones; narrower near zones; 
longer, wider progressive corridors; and lesser, 
more slowly increasing levels of astigmatic error 
(i.e., lower gradients). See Figure 11:15. 
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FIGURE 11:15 Relatively ‘soft’ PAL design. 

In general, harder PAL designs will provide wider fields 
of view, and will require less head and eye movement, 
at the expense of more swim and blur. Softer PAL 
designs will provide reduced levels of astigmatism and 
swim, while limiting the size of the zones of clear vision 
and requiring more head and eye movement. Newer 
design PALs are seldom absolutely ‘hard’ or absolutely 
‘soft.’ Unfortunately, such terms do not satisfactorily 
describe newer lenses. Many of the recent PAL designs 
incorporate a balance between the two design 
philosophies. 

Some manufacturers now choose to vary the specific 
progressive lens design used for each add power and/or 
base curve throughout the entire lens series: 

• Multi-designs. Some PAL manufacturers vary the 
surface design of each lens in a progressive lens 
series based upon the add power. These multi-
design (or ‘add-specified’) lenses are designed to 
consider the effects of increasing astigmatic errors, 
as well as the change in the wearer’s visual needs 
as his/her presbyopia advances. Since these effects 
accompany an increase in add power, the lens 
design can be modified accordingly for each add. 

• Design by Prescription Designs. One 
manufacturer has recently introduced a Design by 
Prescription™ progressive lens series. These lenses 
vary the design of each base curve and add power 
combination based upon both the add power and 
the distance prescription. This philosophy considers 
not only advances in presbyopia, but also optical 
differences between various distance refractive 
errors. 

Early progressive lenses were symmetrically designed 
so that the right and left lenses were identical. To 
achieve the desired inset for the near zone, the lens 
blanks were rotated in opposite directions by 9 or 10° to 
create right and left lenses. The principal drawback to 
this was the disruption of binocular vision as the wearer 
gazed laterally across the lens, since the astigmatism 
differed between the nasal and temporal sides of the 
distance zone. Most newer lens designs, however, are 
asymmetrically designed with separate right and left 
lenses. The amount of astigmatic error on either side of 
the progressive corridor can now be adjusted 
independently. Compare the distance zones in the early 
symmetrical right and left designs in Figure 11:16 with 
the asymmetrical designs in Figure 11:17. 

      
FIGURE 11:16 Early symmetrical PAL design in which the 
distortion rises into the nasal distance zone on both lenses 
after they have been rotated. When the right and left eyes look 
to the left, for instance, the right eye encounters blur while the 
left eye does not. 

      
FIGURE 11:17 Newer asymmetrical PAL design. 

Because of their change in curvature, all progressive 
lenses are inherently aspheric (or non-spherical). 
Today, this term is used quite loosely and should 
probably be qualified with some additional details. For 
example, some manufacturers use base curves that are 
flatter than conventional best form base curves for their 
PAL designs. Asphericity is applied in the distance 
portion of the lens to compensate for this; this is the 
same concept utilized for single vision aspheric lenses. 
Others may refer to their designs as aspheric if the 
distribution of unwanted surface astigmatism 
encroaches significantly into the upper half of the lens. 
Still others may call any PAL design aspheric by using 
the word in its strictest sense. 

In addition to the astigmatic error inherent in a 
progressive lens, the change in power and magnification 
produced by the corridor and near zone of the lens 
results in skew distortion. Objects, like straight lines, 
may appear curved—or skewed—when viewed through 
the lateral areas in the lower portion of the lens. The 
more curved a vertical line appears, the less 
orthoscopic the lens is through that particular zone. 
This is illustrated in Figure 11:18 (Jalie 23). 
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FIGURE 11:18 The change in power and magnification 
through the progressive corridor and near zone produces skew 
distortion, when compared to conventional multifocals. 

TABLE 19 ISO/ANSI PAL markings 

Reference Markings Abbr Type 
Prism reference point 

Surfacing layout 
Prism verification 

PRP Remov. 

Distance reference point 
Distance power verification 

DRP Remov. 

Fitting cross 
Fitting reference 
Finishing layout 

FC Remov. 

Near reference point 
Add power verification 

NRP Remov. 

Alignment reference mark 
Axis alignment 
Re-marking lenses 
Identification of lens type 

or manufacturer 

ARM Perm. 

Add power 
Identification of add power 

ADD Perm. 

Logo 
Identification of lens type 

or manufacturer 

LOGO Perm. 

Progressive addition lenses are supplied with two types 
of markings for layout, power verification, dispensing, 
and identification purposes. Removable markings, 
which are inked on, identify the layout, verification, and 
dispensing points of the lens. Perrmanent markings, 
which are engraved upon the surface, provide the 
identification and add power of the lens, as well as 
locator marks to reapply the ink markings if necessary. 
The standardized locations of these markings are shown 
in Figure 11:19 and Figure 11:20. Table 19 above 
provides some additional information about each 
marking, and its application (ANSI 23). 
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FIGURE 11:19 Temporary ink markings. 
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FIGURE 11:20 Permanent engravings. 

11.4 BLENDED BIFOCAL LENSES 

There is another type of bifocal lens that falls under the 
‘invisible multifocal’ umbrella. The blended bifocal is 
a one-piece, round-style bifocal that has had the border 
between the segment and the major portion literally 
blended away. These multifocals have no visible line of 
demarcation (or apparent segment border) as a result. 
Unfortunately, an annular zone surrounding the 
segment, with a high degree of surface astigmatism, is 
created from the blending process. This astigmatic error 
causes blurred vision through the zone, which increases 
as the add power increases. Further, the level of surface 
astigmatism also becomes greater as the width of the 
blending zone is made narrower. 

It is important to note that blended bifocals have no 
progressive power characteristics. They also suffer from 
image jump like conventional multifocals. A typical 
blended bifocal, the EZ 2 Vue lens, is shown in Figure 
11:21. 
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FIGURE 11:21 The EZ 2 Vue lens. Notice the annular zone 
around the segment, where the border between the segment 
and the major portion has been blended out. This is an area of 
high surface astigmatism and blur, whose magnitude increases 
as the add power increases. The surface astigmatism also 
increases as the width of the blending zone becomes narrower. 

 
Design by Prescription is a trademark of SOLA International, 
Menlo Park, California. 
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12. Assorted Topics 
Now that we have covered the basics of ophthalmic 
lenses, and their application to the eye, we can consider 
some additional, ‘miscellaneous’ concepts. These next 
sections extend many of the principles that we have 
examined previously. Various topics like lap tools, 
vertex distance compensation, vertical imbalance, and 
magnification will be presented. 

12.1 LAP TOOLS AND THE CURVE VARIATION 
FACTOR 

To produce a curved refracting surface upon a spectacle 
lens material, the surface can be cast to the desired 
curvature when the material is in its liquid monomer 
state, or it can be ground to the desired curvature using 
any one of various milling machines. Once the surface 
curve of an ophthalmic lens has been ground, the 
surface is fined and polished using abrasives against a 
hard tool, called a lap tool, that corresponds to the 
desired curvature of the lens. For instance, a -6.00 D, 
concave surface curve is produced using a +6.00 D, 
convex lap tool as shown in Figure 12:1. Lap tools are 
available in an assortment of surface powers that allow 
the laboratory to produce a wide range of back curves. 

Lens Lap tool

 
FIGURE 12:1 Lap tool and lens. 

Keep in mind that a given lap tool, with its single radius 
of curvature, will produce different surface powers on 
lens materials with different indices of refraction. 
Currently, there are dozens of different lens materials 
available with a variety of refractive indices. For 
convenience the powers of these tools, as well as the 
instruments designed to measure them, are frequently 
referenced to a single, standard index of refraction. In 
the United States, this standard tooling index is 1.530. 
Manufacturers may also use this tooling index when 
describing the surface powers of their lens blanks. This 
new, 1.530-based curve is known as the true curve. 
Here are some other general points to remember about 
lap tools: 

• The degree of accuracy for producing surface 
powers using a set of lap tools can be no better than 
½ of the increment between each lap tool. For 
instance, the accuracy of a set of lap tools that 
come in 0.10 D increments is +/-0.05 D. 

• As the refractive index of a material increases, the 
increment of the lap tools effectively decreases. For 
instance, a 0.10 D change in a lap tool (referenced 
to a 1.530 refractive index) will produce a 0.09 D 
change in surface power on a lens material with a 

1.500 refractive index, but only a 0.12 D change in 
surface power on a lens material with a 1.66 
refractive index. 

• Since placing abrasive pads (with a given 
thickness) on the lap tool effectively changes its 
radius of curvature, a slight pad compensation is 
sometimes necessary for steeper curves. This can 
be done by simply adding the thickness of the pad 
to the radius of curvature of the lap tool to 
determine the effective radius of curvature of the 
pad/lap tool combination. 

We should emphasize the point that two curves with the 
same curvature can have two different surface powers—
depending upon the refractive index of the material (Eq. 
14). A given lap tool can be used to grind its curvature 
onto a wide variety of lens materials and, consequently, 
can produce a wide variety of surface powers. Lap tools 
are labeled with a surface power corresponding to a 
refractive index of 1.530 for simplicity and consistency. 

It is possible to quickly determine the actual surface 
power of a curve based upon the 1.530-based value. 
This might be necessary if a lens surface is measured by 
a lens measure, which is based upon a 1.530 index. It 
might also be appropriate if you wish to determine the 
lap tool required to grind a certain surface power on a 
lens, which will generally have an index that differs 
from the 1.530 tooling index. The actual power FACT of 
a lens surface is given by 

F
n

rACT
ACT=

− 1
 

where nACT is the refractive index of the lens material 
and r is the radius of curvature. The reference power 
FREF of a lens surface is given by 

F
n

rREF
REF=

− 1
 

where nREF is the reference refractive index (often 
1.530). Equating both formulas for r gives us 

F
F

n
n

ACT

REF

ACT

REF
=

−
−

1
1

 

Finally, we are able to solve for the actual surface 
power FACT—without knowing the curvature—by using 
the curve variation factor: 

EQ. 65 F
n
n

FACT
ACT

REF
REF=

−
−

⎛
⎝
⎜

⎞
⎠
⎟

1
1

 

This formula allows us to calculate the actual surface 
power of a lens, based upon the refractive index nACT of 
the lens material, if the measured or reference surface 
power is known, relative to a particular reference index 
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nREF. This curve variation factor can also be used to 
compare different materials to each other, as well. 

Example 

A lens measure—based upon a 1.530 tooling index—is 
used on a high-index glass lens with an index of 1.700 
and shows a reading of +4.50 D. What is the actual 
surface power? 

F
.
.ACT =

−
−

⎛
⎝⎜

⎞
⎠⎟

1700 1
1530 1

4 50.  

( )FACT = 1321 4 50. .  

F .ACT = 594  

∴ Surface power is +5.94 D. 

12.2 EFFECTIVE POWER 

This section will explore two closely related concepts: 
effective power and vertex distance compensation. We 
have previously pointed out that the focal power of a 
lens is based upon the position of the reference plane 
from which the focal points are measured. In our 
discussion of thick lenses (Section 4.4), for instance, we 
referred to the back vertex power of a lens as the 
reciprocal of the distance from the back vertex of the 
lens surface to the secondary focal point. 

Consider the thin lens in Figure 12:2. The vergence of 
light at the plane of the lens is +5.00 D. At 10 cm from 
the lens, however, the vergence is +10.00 D! At 15 cm 
from the lens, which is 5 cm from the secondary focal 
point F', the vergence is +20.00 D. The effective power 
of the lens is simply the image vergence of light at some 
chosen reference plane. 

If the reference plane is kept stationary while the lens is 
moved, the same effect is produced: a change in the 
effective power of the lens relative to the intended 
reference plane. Therefore, the position of the lens is 
critical in order to maintain the correspondence between 
the secondary focal point and the intended focal plane 
of a lens. If the lens is moved away from its intended 
position—or reference plane—it creates a change in 
power (or vergence) relative to the intended location of 
the lens. If the lens is moved to the left or right, for 
instance, the image created is also shifted to left or right 
by the same distance. 

•
F'

20 cm

5.00 D 6.67 D 10.00 D 20.00 D

15 cm

10 cm

5 cm

Effective Power / Vergence

 
FIGURE 12:2 The effective power of the +5.00 D lens is 
based upon the distance of the lens from various reference 
planes. For instance, at a reference plane 5 cm from the lens 
(or 15 cm from the secondary focal point F'), the image 
vergence becomes 6.67 D. At 15 cm from the lens (or 5 cm 
from F'), the vergence becomes +20.00 D. 

Ideally, the secondary focal point F' of a lens should fall 
on the intended focal plane of the optical system when 
the lens is at its intended position (or reference plane). 
For an image to be formed at this plane from an object 
at infinity, the secondary focal length f' of the lens—
when placed at the intended position—should be equal 
in length to the distance between the intended focal 
plane and the intended position of the lens. Figure 12:3 
and Figure 12:4 demonstrate the shift of the secondary 
focal points F' of a plus lens and a minus, as the lenses 
are moved by a distance d to the left of the intended 
positions. 

The effective power, or vergence at the reference plane, 
in both situations is simply equal to the reciprocal of the 
effective focal length fE. This is the distance from the 
actual location of the secondary focal point F' of the 
lens to the intended lens position, or reference plane. 

In these examples, the plus lens has been shifted away 
from the focal plane, effectively increasing the power 
of the lens relative to the intended position of the lens. 
Moving the minus lens in the same direction, however, 
shifts the lens towards the focal plane, effectively 
decreasing the power of the lens relative to the intended 
position of the lens. After a given shift d in lens 
position, the effective focal length fE is equal to fE = f' ± 
d. All distances should preferably be in meters, though 
millimeters will also work if each variable uses the 
same unit of measure. 
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•
F'

Intended
Focal Plane

fE

f'
d

Intended
Position

 
FIGURE 12:3 This plus lens has been moved to the left from 
its intended position by a distance d; effectively increasing its 
power. The effective focal length fE, at the reference plane, is 
now fE = f' - d. This is shorter than the original focal length f'. 

F'•

f'

Intended
Focal Plane

fE

d

Intended
Position

 
FIGURE 12:4 This minus lens has been moved to the left 
from its intended position by a distance d; effectively reducing 
its power. The effective focal length fE, at the reference plane, 
is now fE = f' - d (f' is negative). This is longer than the 
original focal length f'. 

In order to compensate for this shift, the secondary 
focal length must be adjusted by the same distance d 
that the lens was moved, as illustrated in Figure 12:5 
and Figure 12:6. This will require a modification to the 
actual focal power of the lens. To find the new, 
compensated power FC required to offset the change in 
effective power of the original lens—with a focal power 
of F—we can use Figure 12:5 and Figure 12:6. First 
consider that: 

F
fC

C
=

1
 

where fC is the compensated focal length in meters. 

F'

f C = f' + d

Intended
Focal Plane

•

Intended
Position

 
FIGURE 12:5 For this plus lens the compensated focal length 
fC is longer than the original focal length f'. The compensated 
focal length is equal to fC = f' + d. 

F'

= f' + df C

Intended
Focal Plane

•

Intended
Position

 
FIGURE 12:6 For this minus lens the compensated focal 
length fC is shorter than the original focal length f'. The 
compensated focal length is equal to fC = f' + d. 

From the diagrams, we can see that fC = f' ± d. 
Remember that the secondary focal length f' of a lens is 
equal to the reciprocal of its focal power, 1 / F. 
Substituting for both f' and fC, gives us 

F

F
d

C =
±

1
1  

Clearing the fraction from the denominator gives us the 
compensated power formula: 

EQ. 66 F
F
d FC =

± ⋅1
 

where d is the movement in meters. 

The following sign convention should be used for d: 

• Lens movement to the left, or away from the eye, 
represents a positive (+) value for the distance d. 

• Lens movement to the right, or towards the eye, 
represents a negative (-) value. 
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For ophthalmic lenses, the intended position of the lens, 
relative to the corneal apex of the eye, is determined 
during the eye examination. Lenses used during an 
examination to refract the eye are generally positioned 
at approximately 13 to 14 mm from the apex of the 
cornea. The distance of the back vertex V' of the lens to 
the apex of the cornea is known as the vertex distance. 
When the spectacle lens is placed at the refracted vertex 
distance, the secondary focal point should coincide with 
the intended focal plane of the eye. Recall from Section 
6.2 that the intended focal plane of the eye is called the 
far point (MR). 

We have discussed the actual compensated power 
required to offset the change in effective power. In 
addition, it is possible to determine the approximate 
amount of power change ΔF for a given movement if 
we expand our previous formula (using a binomial 
expansion) and drop ‘higher order’ terms. This 
approximation gives us: 

EQ. 67 ΔF F d= ⋅2
  

where ΔF is the change in power, F is the original focal 
power, and d is the lens movement in meters. 

This formula can be used to both predict the 
approximate change in effective power, and to 
determine the amount of power change needed to 
compensate for it (compensated power). 

The concept of compensated power applies if the 
spectacle lens is not fitted at the vertex distance. A 
change in effective power will result unless the focal 
power of the lens is adjusted accordingly. This process 
is known as vertex distance compensation. The same 
formula (Eq. 66) is used. The shift d in this situation 
refers to the difference between the refracted vertex 
distance and the fitted vertex distance. Recall that the 
refracted vertex distance is the vertex distance used by 
the prescriber while determining the initial spectacle 
correction. The fitted vertex distance is the vertex 
distance of the actual spectacle frame and lenses (or the 
finished eyewear). 

Figure 12:7 outlines the steps involved in vertex 
distance compensation for a plus lens that has been 
moved away from the eye. Of course, the steps are 
automatically performed for you when the formula is 
used. You should pay careful attention to your sign 
convention (for d), until you develop an intuition about 
the effects of vertex distance. After that, you should be 
able to tell whether or not you used the wrong sign (±) 
for d. 

•
F' = MR

A f' = mR

RV

 

•F' MR

f'

•

d

B

RVFV

 

•

C

F' = MR

FV

Cnew f' = f = f' + d
 

FIGURE 12:7 Vertex distance compensation. A) The 
secondary focal point F' of this plus lens has been prescribed 
to coincide with the far point MR at the refracted vertex 
distance (RV). B) The lens has been moved forward by a 
distance d from the refracted vertex distance to the new, fitted 
vertex distance (FV). The far point MR no longer coincides 
with the secondary focal point F'. C) The original lens has 
been replaced with a weaker plus lens to compensate for the 
change in effective power. The secondary focal length of the 
new lens is equal to the compensated focal length, or new f' = 
fC = f' + d. The new secondary focal point F' now coincides 
with MR again. 

Here are some additional considerations regarding 
effective power compensation: 

• Low-powered lenses: The effective power for 
lenses with little or no power will not need 
compensation. It only becomes necessary to 
compensate for effective power when fitting 
spectacle lenses over ±6.00 D, or when fitting 
contact lenses over ±4.00 D (because of the 
significant distance from the spectacle plane). The 
prescriber may note the refracted vertex distance on 
the prescription if compensation may be necessary. 
If it is not noted, then 13 to 14 mm is a good 
assumption. 

To understand why compensation is only critical 
for high-powered lenses, consider moving a 10.00 
D lens—with a focal length of 100 mm—a distance 
of 5 mm. This distance represents 5% of the focal 
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length. Now consider moving a 1.00 D lens, with a 
focal length of 1000 mm, the same distance of 5 
mm. This distance only represents 0.5% of the focal 
length. 

• Plus lenses: Increasing the vertex distance of a 
plus lens will increase the effective power of the 
lens. To compensate for this, a weaker lens should 
be ordered. Alternately, a decrease in the vertex 
distance will require a stronger lens. 

• Minus lenses: Increasing the vertex distance of a 
minus will decrease the effective power of the lens. 
A stronger lens should be ordered to compensate 
for this. Alternately, a decrease in the vertex 
distance will require a weaker lens. 

• Sphero-cylindrical lenses: Each principal 
meridian of a lens with cylinder power should be 
calculated independently. Do NOT compensate the 
actual cylinder power! The new nominal cylinder 
power will be the difference between the two 
compensated principal meridians. 

Example 

A +10.00 D lens is moved away from the eye by 5 mm 
(0.005 m). What is the change in power? 

( )ΔF = 10 00 0 0052. .  

ΔF = 050.  

∴ Change in power is 0.50 D. 

Because this is a plus lens moved away from the eye, 
the change is an increase in plus power. It is interesting 
to note that the exact value is closer to 0.53 D. This 
difference is quite negligible for our purposes. To 
compensate for the change in vertex distance using the 
approximate formula, simply subtract 0.50 D from the 
initial power (since it is effectively increased) so that 
+10.00 - 0.50 = +9.50. 

Example 

A prescription calling for a -6.50 DS -1.50 DC × 090 
lens is prescribed at a 14-mm vertex distance, but fit at 
an 11-mm vertex distance. In this case, the lens is being 
moved to the right towards the eye (remember the sign 
convention). This represents a negative (-) movement of 
3 mm (0.003 m). What compensated power should be 
ordered? 

First, calculate both principal meridians individually. 
For the meridian FCSPH containing the sphere power use 
-6.50. For the meridian FCCYL containing the cylinder 
power use -6.50 + (-1.50) = -8.00. 

( )F
.

. .CSPH =
−

− −
6 50

1 0 003 6 50
 

F
.

.CSPH =
− 6500
10195

 

FCSPH = −6 38.  

( )F
. .CCYL =
−

− −
8 00

1 0 003 8 00
.

 

F
.CCYL =

− 8 000
1024

.
 

FCCYL = −7 81.  

The new sphere power FCSPH is -6.38 D. The new 
cylinder power CC is the difference between the two 
compensated principal meridians (FCCYL - FCSPH): 

( )CC = − − −7 81 6 38. .  

CC = −143.  

∴ Compensated prescription is: 

-6.38 DS -1.43 DC × 090. 

12.3 NEAR VISION EFFECTIVITY 

Earlier, we examined the conjugate foci formula (Eq. 
21) for calculating the image vergence produced by a 
thin lens for a given object vergence. Thick lenses 
complicate the use of our conjugate foci formula, 
somewhat. Instead of simply adding the incident object 
vergence to the vertex power FV of the lens, we must 
add the entering object vergence L to the surface power 
F1 of the front curve of the lens, or F1 + L. This 
combined value should be substituted back into the 
back vertex power formula. Hence, the final image 
vergence L' is given by 

EQ. 68 
( )

′ =
+

− +
+L

F L
t
n

F L
F1

1

2

1
 

where L is the object vergence and L' is the image 
vergence in diopters. 

Example 

A wave front with -3 D of divergence (from an object at 
33 cm)—strikes a +4.00 D thick lens. The lens has a 
front curve of +8.00 D, a back curve of -4.17 D, a 
center thickness of 4 mm (0.004 m), and a refractive 
index of 1.500. What is the image vergence exiting the 
lens? 

( )

( )[ ]
( )′ =

+ −

− + −
+ −L

8 3

1
0 004
1500

8 3
4 17.

.

.  
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( )′ = + −L
5

0 9867
417

.
.  

( )′ = + −L 507 417. .  

′ =L 0 90.  

∴ Final image vergence is +0.90 D. 

Now consider the thin lens result using the conjugate 
foci formula (Eq. 21): 

 ′ = +L F L  

( )′ = + + − =L 4 00 3 1.  

The difference between the exact image vergence and 
the approximate image vergence is referred to as the 
near vision effectivity error. In our example, the near 
vision effectivity error is 0.90 - 1.00 = -0.10 D. 

The clinical significance of this error is that the form 
and thickness of a thick lens will affect the actual image 
vergence produced for a given object distance. 
Although two lenses may have the same back vertex 
power (for an object at optical infinity), they will 
produce slightly different image vergences for objects at 
near if their lens forms are different. Consequently, a 
reading prescription determined using trial lenses of 
one form and thickness may differ slightly in 
performance once the actual lenses are produced using 
another form. 

12.4 VERTICAL IMBALANCE AT NEAR 

For single vision lenses, the wearer does not necessarily 
have to look away from the optical centers of the lenses. 
For multifocal lenses, however, the wearer is required to 
depress the lines of sight down into the segments or 
near zones of the lenses. For lenses with unequal 
powers—for the correction of anisometropia—this can 
produce certain undesirable side effects. 
Anisometropia is a difference in the refractive errors 
between the two eyes (e.g. OD -4.00 DS and OS -1.00 
DS). The most notable consequence of anisometropia is 
vertical prismatic imbalance at near. When the eyes 
lower to read something through the segments of 
multifocal lenses with differing focal powers, unequal 
vertical prismatic effects are encountered. 

The reading level of a multifocal is the position 
through the segment or near zone of a multifocal that 
the wearer will most likely look through for near vision. 
For a flat-top bifocal, the reading level is typically about 
5 mm below the top of the segment. The differences in 
prismatic effects between two lenses are illustrated with 
the contour plots below in Figure 12:8. Notice that at 
the segment reading levels, 15 mm below the optical 
centers of the lenses, the +1.00 D lens produces 1.50Δ of 

prism, while the +2.00 D lens produces twice that with 
3.00Δ of prism. 

 +1.00 DS +2.00 DS

• •

15

 
FIGURE 12:8 Differential prismatic effects at near. Each 
shaded contour represents 1Δ of prism. Notice that the +1.00 
DS lens has 1.50Δ (base up) at the reading level, while the 
+2.00 DS lens has 3.00Δ (base up) at the reading level. The 
total vertical imbalance is 3.00 - 1.50 = 1.50Δ (base up in the 
+2.00 DS lens). 

There are several methods available to compensate for 
the vertical prism imbalance produced at near. The most 
common method involves grinding a second distance 
curve on the lower half of one of the lenses. The second 
curve is ground with base up prism in the lower portion 
of the lens only; enough to compensate for the vertical 
prism imbalance produced between the two lenses at 
near. Essentially, the two curves are tilted with respect 
to each other to produce the differential prismatic effect. 
This process is referred to as bi-centric grinding, since 
it effectively produces two distance optical centers. For 
plastic lenses, the bi-centric grinding is done on the 
back surface, as illustrated in Figure 12:9. 

The finished lens is often referred to as a slab-off lens. 
The lens with the least plus or most minus power in the 
vertical meridian will be the lens used for the slab-off. 
For glass lenses, the bi-centric grinding is done on the 
front surface 

There are also pre-made plastic lenses available that 
have been molded with bi-centric curves. These lenses 
typically have a base down prismatic effect cast onto the 
near portion of the front of the lens. Consequently, such 
a lens is generally referred to as reverse slab-off lens. 
The reverse slab-off lens will be the lens with the most 
plus or least minus power through the vertical meridian. 

 Reading 
Level
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FIGURE 12:9 A) A conventional bifocal lens blank is ground 
with a second distance curve, containing the desired amount 
of prism, onto the lower half of the back surface. B) The final 
slab-off lens blank is now bi-centric and has two back curves. 

The process of bi-centric grinding, or molding, 
produces a definite line across the entire lens. This line 
represents the junction between the two distance curves 
and should follow the top edge of the bifocal segment—
as shown in Figure 12:10. Once the wearer crosses this 
slab line, the prismatic effect of the lower curve is 
encountered. 

SLAB LINE

 
FIGURE 12:10 The line produced by bi-centric grinding. 

The fastest way to calculate the vertical prism 
imbalance ΔVERT at near is to simply determine the 
difference in power FDIF90 between the two vertical 
meridians of the lenses, and then multiply this 
difference by the reading level distance y, in centimeters 
(Prentice’s rule, Eq. 42): 

EQ. 69 ΔVERT DIFy F= ⋅ 90  

where ΔVERT is the vertical prism imbalance, FDIF90 is 
the difference in power between the two vertical 
meridians, and y is the reading level distance from the 
optical centers in centimeters. 

It is also important to note that the power through the 
vertical meridian of lenses with cylinder should be used 
to determine the net imbalance. When the cylinder has 
an oblique axis, use the sine-squared method to 

determine the power through the vertical meridian (Eq. 
31).* 

Example 

You are given a prescription for a right (OD) lens of 
+2.00 DS -1.00 DC × 180 and a left (OS) lens of +3.50 
DS -2.00 DC × 060. The lenses will have a reading 
level of 10 mm (1.0 cm). What amount of slab-off prism 
would you order to compensate for the vertical 
imbalance at near? 

First determine the power through the vertical 
meridians. For the right lens, the power FR90 through 
the vertical meridian is simply equal to combined 
sphere and cylinder power since the axis is at 180°, so 
that FR90 = FSPH + C: 

( )FR90 2 00 100= + + −. .  

FR90 100= + .  

For the left lens, the power FL90 through the vertical 
meridian can be found with our sine-squared formula—
once we determine the axis θ between the vertical 
meridian and the cylinder axis: 

θ = − = °90 60 30  

( )F . .L90
2350 30 2 00= + −sin  

( )FL90 350 0 50= + + −. .  

FL90 300= + .  

These powers have been confirmed on the optical 
crosses in Figure 12:11. 

150° 060°

+1.50 D+3.50 D

180°

090°

+1.00 D

+2.00 D

090°

+3.00 D
Right Left  

FIGURE 12:11 Optical cross diagrams for the right and left 
eyes. The power through the vertical meridian FR90 of the 
right lens is +1.00 D, while the power through the vertical 
meridian FL90 of the left lens is +3.00 D. The difference in 
power between the two vertical meridians is FR90 - FL90 = 
+2.00 D. 

Now, calculate the prism imbalance at near: 

                                                           
* Although there are trigonometric methods that are 
more accurate, we will use our sine-squared 
approximation here. Since the final prism values are 
often rounded to the nearest ½Δ, our approximation 
provides an acceptable level of accuracy. 
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( )ΔVERT = +10 2 00. .  

ΔVERT = 2 00.  

∴ Vertical imbalance is 2.00Δ. 

The slab-off lens will be the lens with the least plus or 
most minus. In this instance, the right lens—which has 
the least plus power through the vertical meridian—
would be the lens to use for the bi-centric grinding 
(slab-off) operation. 

Another way to look at this is to consider the residual 
(net) prismatic imbalance. The net prism imbalance is 
actually 2.00Δ base up in the left lens, which had the 
most plus power to begin with. Balancing this prism 
effect would require adding base up prism to the near 
portion of the right lens as, well. Conversely, if a 
reverse slab-off lens were used, base down prism would 
be added to near portion of the left lens to neutralize the 
residual base up effect. 

Although bi-centric grinding is the most popular way to 
minimize vertical imbalance at near, it is certainly not 
the only way. The following methods can also be 
employed to reduce or eliminate vertical imbalance 
(Brooks & Borish 459): 

• Two pairs of eyewear. Using separate glasses for 
distance vision and near vision precludes the need 
for additional vertical imbalance correction. 

• Contact lenses. Since contact lenses follow the 
rotation of the eyes, prism—and prismatic 
imbalance—is generally not encountered. 

• Prism and R-compensated segments. Certain 
glass multifocals can be ground to produce prism 
compensation directly in the reading segment. 

• Dissimilar segments. If two multifocals are 
positioned with their segment optical centers at 
different vertical locations, they will produce a 
vertical prism imbalance at near. This prism 
imbalance, which varies as a function of the add 
power and the vertical separation between the 
segment optical centers, can be used to help 
neutralize the vertical prism imbalance induced by 
the major portion of the lenses.  

• Fresnel press-on prisms. Fresnel press-on prisms, 
which are thin plastic sheets with optical qualities, 
provide an inexpensive—yet relatively 
temporary—solution  for  a vertical imbalance 
correction similar in nature to a slab-off. 

• Optical center placement. Lowering the optical 
centers of the lenses brings them closer to the near 
points, and reduces the reading level distance. 
Although this method reduces the vertical 
imbalance at near by shortening the drop from the 

distance optical centers, it does introduce some 
unwanted vertical imbalance during distance 
vision. 

Vertical imbalance compensation is not usually 
considered until the prism imbalance exceeds 1.50 to 
2.00Δ. Even then, it may not be necessary since many 
wearers with vertical imbalance may adapt to it over 
time or may not possess normal binocular vision. 
Wearers who have recently had an appreciable change 
in the vision of one eye are the most likely candidates 
for vertical imbalance correction, including refractive 
and cataract surgery patients. If the wearer exhibits 
symptoms such as asthenopia (i.e., eye fatigue) or 
diplopia (i.e., double vision) during near vision, a 
vertical imbalance correction should be considered. 

12.5 SPECTACLE MAGNIFICATION 

In the previous sections, we have discussed the ability 
of a lens to change the vergence of light passing 
through it. A secondary effect produced by lenses is the 
apparent increase or decrease in the perceived size of 
the object. This is referred to as magnification, when 
the image appears larger than the object, or 
minification, when the image appears smaller than the 
object. We will use the term ‘magnification’ to refer to 
any generic change in the apparent size of an object. 
Magnification is often desired for instruments such as 
binoculars. Figure 12:12 and Figure 12:13 show the 
magnification and minification produced by plus- and 
minus-powered lenses, respectively (Wakefield 59). 

O
O'  

FIGURE 12:12 Magnification by a plus lens. The original 
object O is magnified by a plus-powered lens, producing a 
larger image O'. 

O
O'

 
FIGURE 12:13 Minification by a minus lens. The original 
object O is minified by a minus-powered lens, producing a 
smaller image O'. 

For most spectacle-wearers, magnification (or 
minification) is generally an inconsequential side effect 
of their lenses. It is typically only problematic when the 
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wearer experiences a significant change in 
magnification from his or her habitual lenses, or when 
the magnification is significantly different between the 
right and left eyes due to anisometropia. For instance, a 
change in the wearer’s prescription can produce a 
noticeable change in the magnification produced by his 
or her new lenses. 

Spectacle magnification is typically defined as the 
amount of angular magnification produced by the lens. 
The angular magnification M is the ratio of the angle θ' 
subtended by the image produced by the lens at the 
nodal point of the eye N, compared to angle θ 
subtended by the original object, so that  

EQ. 70 M =
′θ

θ
 

We are going to make two approximations at this point: 
We will assume that the lens is thin, and that angles θ 
and θ' are small. Using these two approximations, we 
can show that the spectacle magnification M of a thin 
lens is given by*  

EQ. 71 M
h F

=
− ⋅

1
1

 

where h is the vertex distance from the back of the lens 
to the nodal point N of the eye in meters.**  

A value of M equal to unity (or 1) refers to a zero 
change in image size. Values above unity represent 
magnification, and values below unity represent 
minification. Hence, minus-powered lenses minify 
objects, and plus-powered lenses magnify objects. To 
convert this value into a percentage of change in 
spectacle magnification, use: 

EQ. 72 ( )M M% = −100 1  

For thick lenses, a slightly more complex formula is 
required to take into consideration both the power and 
the form of the lens: 

EQ. 73 M
h F t

n
FV

=
− ⋅
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* The complete derivation for this formula can be found 
in Appendix B. 

** The entrance pupil of the eye can also be used in 
place of the nodal point, and is often preferred. The 
entrance pupil is located roughly 3 mm behind the apex 
of the cornea. 

where h is the distance to the nodal point of the eye in 
meters, FV is the back vertex power of the lens, t is the 
center thickness in meters, n is the refractive index, and 
F1 is the front curve. 

The first factor of the equation is our thin lens formula 
for magnification, based upon the power and nodal 
point distance alone. This is known as the power 
factor. The second factor of the equation takes into 
account the form of the lens, including the thickness, 
refractive index, and front curve. This is known as the 
shape factor. 

If we consider both the shape and power factors, we can 
make some general statements about spectacle 
magnification. For instance, consider the following 
points below: 

• Shape factor: Increasing the front curve or the 
center thickness will increase the spectacle 
magnification (or reduce minification). 

• Power factor: Increasing the vertex distance—
which in turn increases the nodal point distance—
will increase the magnification of plus lenses and 
the minification of minus lenses. 

Based upon our reduced eye model, we can assume that 
the nodal point typically lies approximately 6 mm 
behind the apex of the cornea. When the exact distance 
from the back vertex V' of the lens to the nodal point N 
of the eye is unknown, consider adding this 6 mm value 
to the vertex distance measurement (which will be 
discussed in Section 7) to determine the nodal point 
distance h. For instance, a vertex distance of 13.5 
produces a nodal point distance of 13.5 + 6 = 19.5 mm. 

Example 

A -3.00 D lens is worn 15 mm from the nodal point of 
the eye. It has a 4.00 D front curve, a 2-mm center 
thickness, and a 1.500 refractive index. What is the 
percentage of spectacle magnification? 

( ) ( )
M =

− −
⎛
⎝⎜

⎞
⎠⎟

−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1 0 015 3

1

1
0 002
1500

4. .
.

 ( )( )M = 0 9569 10054. .  

M = 0 962.  

M% ( . )= −100 0 962 1  

M% .= −38  

∴ Magnification is -3.8% (smaller). 
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Example 

A +5.00 D thin lens is worn 15 mm from the nodal 
point of the eye. What is the percentage of spectacle 
magnification? 

( )M =
−

1
1 0 015 5 00. .

 

M = 1081.  

M % .= 81  

∴ Magnification is 8.1% (larger). 

There are certain situations where the difference in 
magnification effects between a pair of lenses can be 
problematic. A condition known as spectacle-induced 
aniseikonia may occur after the correction of 
anisometropia with spectacle lenses. Recall that 
anisometropia is a difference in the refractive errors 
between the two eyes (e.g. OD -4.00 DS and OS -1.00 
DS). Aniseikonia is the relative difference in size or 
shape between the ocular images of the two eyes. Since 
spectacle lenses of differing power produce differing 
magnification effects, the eyes are presented with 
disparate images of dissimilar sizes or shapes. If a 
sufficient amount of aniseikonia exists, binocular fusion 
may become difficult or impossible. 

Figure 12:14 and Figure 12:15 are graphs of the 
spectacle magnification produced by shape and power 
factors for a range of center thicknesses, front curves, 
back vertex powers, and vertex distances. To determine 
the total spectacle magnification using the graphs, 
simply add together the percentage of shape 
magnification to the percentage of power magnification. 
Tables like these, as well as the formulas described 
earlier, can also be used to design iseikonic lenses. 

Aniseikonia can be reduced by decreasing the 
magnification difference between the two lenses. A lens 
designed to minimize this magnification difference, and 
the ensuing aniseikonia, is referred to as an iseikonic 
lens. An iseikonic lens can be created by adjusting 
parameters like the center thickness and base curve of a 
normal spectacle lens. 
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FIGURE 12:14 Magnification by shape for a CR-39 lens. 
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FIGURE 12:15 Magnification by power. 

For instance, to decrease the magnification difference 
between a pair of +4.00 D and a +2.00 D lenses, an 
iseikonic lens can be designed by making the following 
modifications to the lenses: 

1. Use a flatter (preferably aspheric) base curve for 
the +4.00 lens. This will reduce the shape 
magnification. Similarly, a steeper base curve can 
be used for the +2.00 lens to increase 
magnification. 

2. Reduce the center thickness of the +4.00 lens as 
much as possible to reduce shape magnification. 
Thickness can be added to the +2.00 lens to 
increase magnification. 

3. Ensure that the +4.00 lens sits as close to the eye as 
possible to reduce power magnification. This can 
be done by shortening the vertex distance of the 
frame or by moving the bevel of the lens towards 
the front surface. 

Many spectacle wearers with appreciable levels of 
anisometropia seem to function without a correction for 
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aniseikonia. Many people can tolerate up to a 3% 
difference in magnification between the two eyes, 
which is roughly equivalent to 2.00 D of anisometropia. 
Wearers with a significant amount of aniseikonia may 
not have normal binocular vision. Another reason for 
why aniseikonia may not be a widespread problem is 
that higher levels of refractive error are often indicative 
of axial ametropia (i.e., length of the eyeball is too long 
or too short). Knapp’s law states that a spectacle lens 
placed at the primary focal point (roughly 14 mm) of an 
eye with axial ametropia will produce a retinal image 
size equal to that of an emmetropic eye. Hence, 
spectacle lenses will actually minimize the 
magnification difference between the retinal image sizes 
in this case. However, if the wearer has anisometropia 
and exhibits symptoms of aniseikonia, you should 
consider minimizing the magnification difference 
through iseikonic lens design. These symptoms may 
include asthenopia (i.e., eye fatigue), impaired 
binocular vision, spatial distortion (e.g., slanting floors), 
or the report of more comfortable vision when using 
only one eye (Fannin & Grosvenor 313). 

12.6 FIELD OF VIEW 

The magnification (or minification) produced by a 
spectacle lens is directly related to the field of view 
provided by a lens of a given size. For instance, a plus 
lens magnifies everything seen through the lens. This 
effectively shrinks the overall field of view seen 
through the lens. A minus lens, though, minifies 
everything seen through the lens. This effectively 
expands the overall field of view seen through the lens. 
Imagine looking through a telescope the correct way. 
Everything looks larger, but at the same time the field 
of vision becomes narrower. Flip the telescope around, 
and everything looks smaller. Now the field of vision 
becomes wider. 

When discussing the ‘field of view’ of a lens, we should 
distinguish between the field of fixation and the 
peripheral field of view as shown in Figure 12:16. The 
field of fixation is the field of view for the rotating eye. 
This describes the extent to which our lines of sight are 
able to fixate objects through the lens. The field of 
fixation is subtended at the center of rotation R of the 
eye. The peripheral field of view is the field of view 
for the steadily fixating eye. This represents the total 
extent of our vision through the lens, including our 
peripheral vision. The peripheral field of view is 
subtended at the entrance pupil P of the eye. 

•
•Peripheral Field

of View
Field of
Fixation

R

P

 
FIGURE 12:16 Fields of view through a spectacle lens. The 
peripheral field of view is subtended by the entrance pupil P 
of the eye. The field of fixation is subtended at the center of 
rotation R of the eye. 

The change in the fields of fixation caused by plano-, 
plus-, and minus-powered lenses of the same diameter 
are illustrated in Figure 12:17. Notice how the plus lens 
has a reduced field of view, while the minus lens has an 
expanded field of view, compared to the unaltered field 
of view afforded by the plano lens with no power.  

A

B

C

 
FIGURE 12:17 Fields of fixation for various lenses of the 
same diameter. A) Normal field of fixation provided by a 
plano lens for an emmetropic eye; B) Reduced field of 
fixation provided by a plus lens for a hyperopic eye; and C) 
Expanded field of fixation provided by a minus lens for a 
myopic eye. 

In addition to the changes in the fields of view, 
spectacle magnification alters the amount of ocular 
rotation required to fixate objects. For instance, a plus 
lens (which reduces the field of view) requires more 
ocular rotation to see an object in the periphery than a 
minus lens (which expands the field of view). 
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12.7 PRISM BY OBLIQUITY 

We made reference in earlier sections (i.e., Section 3.3 
and Section 8.3) to the fact that the angle of incidence 
will affect the amount of prismatic deviation produced 
by lenses and prisms. When light strikes an ophthalmic 
lens at an angle θ with the optical axis, the amount of 
prismatic deviation Δ produced in prism diopters is 
approximately equal to 

EQ. 74 Δ = ⋅100 1tanθ
t
n

F  

where θ is the angle of incidence with the optical axis, t 
is the center thickness of the lens in meters, F1 is the 
front curve, and n is the index of refraction. 

 

This prismatic deviation, produced by the obliquity of 
the incident rays of light, is quite small and, 
consequently, it is often ignored for practical 
applications. For instance, it is not used to provide (or 
induce) prescribed prism. For thin lenses at small angles 
with—and distances from—the optical axis (or center), 
the formulas described earlier will suffice. For more 
exact ray tracing procedures, however, the prismatic 
effects produced by obliquity should be considered. The 
total prismatic deviation is approximately equal to the 
combination of the prismatic effects produced by 
obliquity and the prismatic effects produced by 
decentration—if the deviation of the incident ray is 
being measured at some distance from the optical axis 
(or center). 
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13. Lens Materials and Treatments 
Ophthalmic lenses can be made from various mineral or 
organic materials. These lens materials must have the 
following characteristics to be suitable for spectacle 
lenses: 

• Nearly transparent to all visible wavelengths (free 
from color, unless otherwise specified) 

• Free from defects, like bubbles and inclusions 
• Homogeneity (uniform in both physical and 

chemical composition) 
• Chemically and physically stable 
• Durable and scratch-resistant 
• Safe and impact-resistant 
• Lightweight 
• A high index of refraction and low dispersion are 

desired 

13.1 PERFORMANCE CHARACTERISTICS 

A list of common lens materials, and their pertinent 
characteristics, is provided in Table 20. 

TABLE 20 Lens material characteristics 

Material Index Abbé Density 
CR-39® 1.499 58 1.32 
Crown Glass 1.523 58 2.54 
Spectralite® 1.537 47 1.21 
Polycarbonate 1.586 30 1.20 
RLX Lite® 1.555 36 1.24 
Ormex® 1.558 37 1.23 
Finalite™ 1.600 42 1.22 
1.60 MR-6 1.597 36 1.34 
1.66 MR-7 1.660 32 1.35 
1.6 Index Glass 1.601 40 2.62 
1.7 Index Glass 1.701 30 2.93 
1.8 Index Glass 1.805 25 3.37 

The refractive index of media was discussed earlier in 
Section 2.4. The chromatic dispersion produced by a 
lens material is rated in terms of its Abbé value. Lens 
materials with higher Abbé values produce less 
chromatic dispersion. 

The weight of a material is controlled by its density, 
which is the mass of the material per unit volume 
(generally measured in grams per cubic centimeter). 
The lower the density, the lighter the material will be 
for a given quantity. This can significantly affect the 
comfort of the lenses on the face. Another term 
frequently used is specific gravity, which is the ratio of 
the mass of a material or liquid compared to the mass of 
an equal volume of water (at 4°C). The term density, 
when measured in g/cm3, is synonymous with specific 
gravity since a gram is equal to one cubic centimeter of 
water. 

13.2 REVIEW OF LENS MATERIALS 

Spectacles (or eyeglasses) have been around for some 
time; it is believed that lenses were first utilized for 
spectacles in the late 13th century. Originally, these 
spectacle lenses were ground from relatively expensive 
quartz crystal (Bruneni 2). 

Today, quartz crystal has been abandoned in favor of 
more modern, inexpensive materials. Modern lenses 
typically belong to either of two broad classes of lens 
materials: organic materials (plastics) and mineral 
materials (glass). Organic materials (plastics) can be 
further classified by whether they are thermosetting, or 
thermoplastic materials. 

Thermosetting materials begin as a liquid, monomer 
resin that is eventually polymerized into a solid polymer 
material. A common manufacturing process for 
producing lenses made from thermosetting materials is 
called casting. This process involves first mixing either 
a chemical or photo initiator into the monomer. Two 
glass molds, held together by a gasket, are then filled 
with the liquid monomer as illustrated in Figure 13:1. 
The mold/monomer composite is then cured in either an 
oven (for chemical initiation) or under an ultraviolet 
light source (for photo initiation). During the cure cycle, 
polymerization occurs and the molecules of the liquid 
monomer ‘cross-link’ tightly together—hardening the 
monomer into a polymer lens. The finished lens blank 
has roughly the same surface curvatures as the molds—
although some shrinkage does occur (Fannin & 
Grosvenor 10). 

Front Curve Mold

Rear Curve MoldGasket

Monomer  
FIGURE 13:1 Lens casting. Monomer resin is poured 
between two glass molds that are held together by a gasket. 
The monomer is then cured until it polymerizes into a solid 
polymer lens material. It is interesting to note that the lens 
material shrinks somewhat during polymerization. The 
curvature of the molds will depend upon both the desired 
surface powers of the lens, and the amount of material 
shrinkage that occurs during the cure cycle. 

Various ingredients are often added to the initial 
monomer resin to improve various physical and/or 
optical properties. These additives may be used to 
reduce the yellowness of the material, protect the 
material from ultraviolet degradation and weathering, 
increase the refractive index, help the lens material 
release from the mold, etc. Once cast and polymerized, 
thermosetting materials can not be melted back down to 
liquid, monomer resins. 
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The majority of spectacle lenses are made from allyl 
diglycol carbonate, a thermosetting plastic lens material 
referred to as CR-39 (Columbia Resins). CR-39 was 
originally invented in the 1940s for military 
applications as a bonding agent. Although it didn’t 
become popular as a spectacle lens material until the 
late 1970s, it is presently considered to be the ‘standard’ 
by which other materials are compared. It is 
lightweight, impact-resistant, and can be tinted to 
various shades with chemicals. 

Thermoplastic materials are not cross-linked like 
thermosets, and can be melted and cooled back and 
forth from liquid to solid states. A common 
manufacturing process for producing lenses made from 
thermoplastic materials is called injection-molding. 
This process involves first heating and melting down 
thermoplastic pellets, and then injecting the melted resin 
between two metal molds under controlled pressure. 
The melted plastic is then allowed to cool, and hardens 
into a completed lens blank. 

The most common thermoplastic lens material is 
polycarbonate, which was originally invented by 
General Electric in the 1950s under the trade name 
Lexan. Polycarbonate is known for its exceptional 
impact resistance. It is also quite thin and light-weight, 
compared to many other materials. Another 
thermoplastic material, an acrylic called polymethyl 
methacrylate, was also used for spectacle lenses for a 
number of years in Europe. This material is now used 
primarily for certain rigid contact lenses. 

The majority of mineral lenses are made from a variety 
of glass known as crown glass. Crown glass, which 
dominated the industry for centuries, is comprised 
chiefly of silica, soda, and other miscellaneous 
ingredients. Rough glass lens blanks are produced using 
a continuous flow process. These rough blanks will 
have the front and back surfaces ground to the 
appropriate curvatures by the lens manufacturer. Fused 
bifocal segments can also be added. Optically, crown 
glass is very similar to CR-39 plastic. It also offers 
much greater scratch-resistance. However, glass 
materials are significantly heavier than the plastics 
because of their higher densities, and are much less 
impact-resistant. 

13.3 HIGH-INDEX LENS MATERIALS 

In the United States, when a lens material has an index 
of refraction greater than that of the standard tooling 
index of 1.530, the material is generally referred to as a 
high-index lens material. For instance, glass lens 
materials can have certain metallic oxides, like flint or 
titanium, added to their initial batches to increase their 
index of refraction. There are also thermosetting plastics 
available, like polyurethane, with higher indices of 

refraction. Polycarbonate is another high-index lens 
material. 

High-index materials produce thinner spectacle lenses, 
usually at the expense of lower Abbé values. To 
understand how a high-index lens produces a thinner 
profile, imagine two identical prisms: one with a 
refractive index of 1.500 and the other with an index of 
1.700. Because of the higher index of refraction, the 
1.700-prism deviates light more than the 1.500-prism as 
illustrated in Figure 13:2. 

n = 1.500

n = 1.700  
FIGURE 13:2 As the index of refraction increases, light is 
refracted to a greater extent. 

Conversely, to produce the same deviation as the 1.500-
prism, the 1.700-prism would have to be made with a 
thinner base. The same holds true for ‘high-index’ 
spectacle lenses. Lens curves can be made shallower, 
while still providing the same refractive power. 
Consider a comparison between two -4.00 D lenses, one 
with a refractive index of 1.500 and the other with an 
index of 1.700. These lenses are shown in Figure 13:3. 
Notice that the 1.700 high-index lens is 25% thinner 
than the 1.500 lens. 

Further, high-index plastics are typically lighter in 
weight than conventional CR-39. This is a result of the 
fact that high-index lenses produce thinner lenses with 
less mass. These lens materials often have lower 
densities than CR-39, as well. High-index glass 
materials, on the other hand, are not necessarily lighter 
in weight than conventional crown glass (especially in 
low to moderate powers). Although these high-index 
glass materials have less mass, they often have 
noticeably higher densities. Therefore, the reduction in 
weight is less significant. Sometimes spectacle lenses 
made from these glasses can even weigh more than 
crown glass lenses. 
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FIGURE 13:3 A -4.00 D lens comparison. 

13.4 IMPACT RESISTANCE 

The use of glass has declined over the last few decades, 
since the advent of larger spectacle frames and the 
FDA’s 1972 impact-resistance regulation—which made 
the use of impact-resistant lens materials a requirement. 
The FDA now requires that every lens dispensed in the 
United States be capable of passing a ‘referee’ drop-ball 
test (Optical Industry Assoc. 2). 

This test involves dropping a 15.9 mm (5/8”), 16 g 
(0.56 oz) steel ball upon the lens from a distance of 127 
cm (50”). This impact is equivalent to about 0.2 joules 
of energy. To survive this test without fracturing, most 
glass lenses must be tempered to increase their impact 
resistance, and then tested individually. Tempering 
places the outer surface of the lens in a state of 
compression. Two methods of tempering are currently 
in use for spectacle lenses: 

• Thermal tempering: This process involves heating 
the lens to its softening point, and then rapidly 
cooling the lens with blasts of air. The outer 
surfaces of the lens cool quickly, while the inner 
core of the lens cools more slowly. This places the 
outer surfaces of the lens in a state of compression, 
and the inner core in a state of tension. This process 
takes only a few minutes. The resulting strain 
produced within the lens makes the material 
birefringent (or doubly refracting). This 
birefringence can be evaluated using crossed 
polaroid filters. 

• Chemical tempering: This process involves 
exchanging larger ions from a heated salt bath for 
smaller ions from the surfaces of the lens. These 
larger ions place the surfaces in a state of 
compression. For instance, potassium ions from the 
salt bath might be exchanged with smaller sodium 
ions from the lens surface (for crown glass lenses). 
This process takes between four to sixteen hours, 

depending upon the method. It is also done at lower 
temperatures than thermal tempering. 

Tempering increases impact resistance by placing the 
outer surfaces of the lens into a state of compression. 
Lens materials have a greater resistance to compressive 
stress than tension. When a projectile strikes the surface 
of a tempered lens, the opposite surface is put under 
tension as the lens flexes. This serves to neutralize the 
compressive stress already created in the surface by 
tempering—as opposed to breaking the lens under the 
additional strain. 

Two particularly common types of lens fractures are 
described below (Fannin & Grosvenor 16): 

1. The first breakage (Figure 13:4) is a fracture of 
rear surface origin, caused by a compound flexure 
of the lens that sets up a tension stress at the rear 
surface resulting in a tear at the back surface. This 
occurs primarily when a minus-powered (thinner at 
the center) lens is hit by a missile of moderate mass 
and velocity. 

Compression
Flexure

TensionBreak  
FIGURE 13:4 Lens fracture of rear surface origin. 

2. The second breakage (Figure 13:5) is a fracture of 
front surface origin, caused by simple elastic 
denting of the front surface and a tear that 
propagates to the back. This occurs primarily when 
a small, lightweight, and high-velocity missile hits 
the lens. 

Elastic Denting

Tear  
FIGURE 13:5 Lens fracture of front surface origin. 

Most plastic lenses are inherently impact resistant, and 
are not individually tempered. These lenses are usually 
sample-tested at the manufacturing level to ensure that 
each batch is exhibiting a minimum of impact 
resistance. In certain situations, however, an individual 
lens may need to be tested if it has been ground below a 
certain center thickness, or if it has had additional 
coatings applied to it. 

13.5 TRANSMITTANCE AND ABSORPTION 

In Section 3, we discussed the interaction of lens 
materials with the light incident upon them. Recall that 
light may be reflected by a material, transmitted by a 
material, and/or absorbed by a material. We looked 
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closely at the reflectance of lens materials, and learned 
that a typical ophthalmic lens reflects 8% or more of 
incident light. So, what happens to the rest of the light 
striking the lens? 

The light passing through the lens may be either 
completely transmitted if the lens is perfectly clear, or 
absorbed to some extent if the lens has filtering 
properties. The fraction of incident light transmitted 
through a lens is referred to as its transmittance τ. 

The transmittance of a lens may vary from wavelength 
to wavelength, especially for tinted lenses with color. 
The transmittance spectra of most clear materials will be 
quite similar—particularly within the visible spectrum. 
For instance, high-index lenses will closely resemble 
the spectrum for CR-39, with two significant 
differences. First, with the use of Fresnel’s formula (Eq. 
7) you can see that high-index lenses reflect slightly 
more light than either crown glass or CR-39, thereby 
transmitting less light. Second, high-index lens 
materials generally absorb more ultraviolet radiation 
than CR-39. A graph showing the percent of 
transmittance for each wavelength is shown in Figure 
13:6 for a clear polycarbonate lens. Such a graph is 
referred to as the spectral transmittance of the lens. It is 
important to note that, since this lens has no color, the 
entire visible spectrum is transmitted evenly. 
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FIGURE 13:6 Transmittance of a clear polycarbonate lens. 
Note that the lens transmits no ultraviolet radiation (below 
380 nm). Most high-index plastic lens materials absorb 100% 
of UVB radiation and 98% or more of UVA. 

Absorption refers to the loss of light as it passes 
through a lens material. Lenses that absorb light evenly 
across the visible spectrum are referred to as neutral 
filters, and will be gray in appearance. Lenses that 
selectively absorb light across the visible spectrum are 
referred to as selective filters. For instance, a lens that 
selectively absorbs blue light may appear amber or 
yellow in hue since it transmits wavelengths other than 
blue. The principal use of absorptive filters is for 
protection against glare (sunglasses). Both neutral and 
selective filters are shown in Figure 13:7 and Figure 
13:8. 
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FIGURE 13:7 Transmittance of a neutral gray CR-39 lens. 
Note that the lens attenuates light quite evenly over the 
majority of the visible spectrum (between 380 to 760 nm). 
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FIGURE 13:8 Transmittance of a selective amber CR-39 lens. 
Note that the lens significantly attenuates blue light, while 
transmitting a considerable amount of the yellow and red end 
of the spectrum—giving it an amber hue. 

It is interesting to note that tinted glass (mineral) lenses 
are made at the factory level by adding metallic oxides 
into the raw material. This disperses the tint throughout 
the mass of the lens blank. Consequently, thicker 
mineral lenses will appear darker than thinner ones, 
since increasingly more light is absorbed as it passes 
through the thickness of the lens blank. This is a 
consequence of Lambert’s law, which states that light 
passing through a given thickness of a homogenous 
material is absorbed by the same percentage—no matter 
what the original intensity (Brooks & Borish 359). 

To use Lambert’s law, we need to know the 
transmittance of the lens material at some arbitrary 
thickness. This thickness will become the layer and the 
transmittance is the transmission factor (q) for that 
layer. Each additional ‘layer’ of the material reduces the 
remaining light from the previous layer by its 
transmission factor. For instance, if a 2-mm layer of a 
given lens material transmits 50% of the incident light, 
4 mm of this lens material—which is 2 layers at 2 
mm—will transmit 50% × 50% = 25% of the original 
light intensity. The final transmittance τ of a lens, after 
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passing through N layers, can be mathematically 
expressed by: 

EQ. 75 N
O qI ⋅⋅= 100τ  

where τ is the final transmittance of the lens, IO is the 
original intensity of the incident light, q is the 
transmission factor for a layer of the material at a given 
thickness, and N is the number of layers. N is given by 
the thickness of the lens divided by the thickness of the 
‘layer,’ which is generally chosen to be 2 mm for 
spectacle lenses. 

Plastic (organic) lenses, on the other hand, are tinted by 
dyeing the surface of the lens in a bath of organic dye. 
The depth of the tint is a mere fraction of the overall 
lens thickness. Therefore, lens thickness has no 
significant effect on the tint appearance of plastic 
lenses. 

There are also lens materials available, in both glass and 
plastic, that are sensitive to sunlight. These lens 
materials are referred to as photochromic filters, and 
automatically darken when exposed to sunlight (or 
ultraviolet radiation). Figure 13:9 demonstrates both the 
faded and darkened states of a common glass 
photochromic lens, Corning’s PhotoGray Extra®. 
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FIGURE 13:9 Transmittance of a photochromic glass lens in 
both its faded (solid line) and darkened (dashed) states. 

Table 21, below, shows the luminous transmittance of 
several photochromic lens materials in both their 
bleached (faded) and activated (darkened) states. The 
luminous transmittance of a lens is its spectral 
transmittance weighted by the photopic (or daytime 
vision) sensitivity of the human eye. This is a more 
meaningful measure of lens transmittance, since the 
sensitivity of the human eye varies between the colors 
of the visible spectrum, as shown in Figure 13:10. For 
instance, blue light at 470 nm—with a 10% 
efficiency—needs to be 10 times as intense to evoke the 
same sensation of brightness as yellow-green light at 
560 nm (with a 100% efficiency). 
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FIGURE 13:10 The sensitivity of the human eye varies from 
wavelength to wavelength, with its peak sensitivity for 
photopic (daytime) vision lying at roughly 555 nm. 

TABLE 21 Transmittance of popular photochromics*  

Glass Materials 
(mineral) 

Faded 
% τ 

Dark 
% τ 

PhotoGray Extra® 85% 22%
PhotoBrown Extra® 85% 22%
PhotoSun II® 40% 12%
PhotoGray Extra® 16™ 83% 22%
PhotoGray® Thin & Dark™ 86% 16%

Plastic Materials 
(organic) 

Faded 
% τ 

Dark 
% τ 

Transitions® Plus 84% 28%
Transitions® III Gray 87% 22%
Transitions® III Brown 87% 22%
Transitions® XTRActive™ 75% 11%
Spectralite® Transitions® III 87% 22%
Seiko Changers™ 89% 30%

Glass photochromics work by the action of silver halide 
crystals distributed throughout the lens blank. Upon 
exposure to sunlight, these crystals break apart into free 
silver particles. The silver particles then cluster 
together, forming silver colloids that absorb visible 
light—causing the lens to darken in color. Upon 
removal from sunlight, the process reverses itself—
causing the lens to fade in color. The photochromic 
performance of glass lenses, which lasts indefinitely, is 
affected by several variables: 

1. Method of tempering. Thermally tempered lenses 
will generally have a lower transmittance in both 
their faded and darkened states than chemically 
tempered lenses. 

2. Lens thickness. As the thickness of the lens 
increases the transmittance decreases in its 

                                                           
* These measurements were conducted within a 
temperature range of 72 to 78°F (22 to 26°C). 
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darkened state, because of the additional level of 
silver halide crystals present throughout the greater 
mass of the lens. 

3. Ambient temperature. Photochromic lenses are 
temperature sensitive, and will darken more in 
colder temperatures than in warmer. 

4. Ultraviolet radiation. Photochromic lenses are 
activated by ultraviolet radiation and short 
wavelength visible light. Therefore, the lenses do 
not darken as much when some of the ultraviolet 
radiation is blocked—such as by an automobile 
windshield. 

The most common plastic photochromics work by the 
action of a thin organic layer of indolino 
spironaphthoxazine molecules that are imbibed (or 
impregnated) into the front surface of the lens blank. 
These molecules undergo a chemical reaction when 
exposed to sunlight, which causes a change in their 
structure. This new configuration absorbs visible light. 
As with the glass photochromics, the process reverses 
itself once the sunlight is removed. Most of the plastic 
photochromics, however, are not affected by lens 
thickness—since only a thin layer of the front surface 
actually contains the photochromic molecules. There are 
some plastic materials that contain the photochromic 
molecules throughout the lens, and their performance is 
affected by lens thickness. 

The photochromic performance of plastic materials is 
also affected by the ambient temperature and the 
amount of ultraviolet radiation. In addition, the 
photochromic performance of these materials gradually 
deteriorates over time, through a process called photo-
oxidation.  

For certain occupational or recreational visual needs, a 
selective filter may be appropriate. For instance, yellow 
and amber tints are often desired for their high-contrast 
qualities. Since the atmosphere scatters more blue light, 
lenses that absorb blue light are going to attenuate more 
of the veiling glare scattered by the atmosphere—
thereby increasing contrast slightly. A typical yellow 
CR-39 lens is shown in Figure 13:11. In addition to 
neutral gray tints, many people prefer brown tints—
particularly in Europe. A typical brown CR-39 lens is 
shown in Figure 13:12. 

Certain occupational tasks may require specific eye 
protection, as well. For instance, specific filters can be 
obtained for use in conjunction with lasers, welding 
devices, x-ray machines, furnaces, etc. The 
transmittance of a didymium lens, sometimes used by 
glass blowers, is shown in Figure 13:13. 
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FIGURE 13:11 Transmittance of a yellow CR-39 lens. Note 
that, like amber lenses, the lens significantly attenuates blue 
light. 

CR-39 Brown 3
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FIGURE 13:12 Transmittance of a brown CR-39 lens. This 
color can also be used for glare and sun protection. 

Glass Didymium
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FIGURE 13:13 Transmittance of a didymium glass lens. Note 
the sharp drop in transmittance (increase in absorption) 
between the 550 to 600 nm range; this is the ‘sodium flare’ 
region.  

Popular glass tint hues are typically available in several 
different transmittance options from the factory (e.g., 
gray 1, 2, and 3). Typically, as the filter’s number or 
letter designation increases the luminous transmittance 
of the lens decreases. Plastic lenses can be dyed to a 
reach a wide range of transmittance values. 

Sometimes, tints with a relatively high transmittance are 
recommended for purely cosmetic reasons. Light 
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‘fashion tints’ can help accent the wearer’s eye color, 
add color to the cheeks, or make the lenses appear more 
natural looking (less ‘glassy’). Some have also 
advocated the use of light tints for reducing the 
discomfort associated with harsh lighting, glare from 
computer screens, and similar visually uncomfortable 
situations. Two such light filters, a blue and a pink lens, 
appear in Figure 13:14. 
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FIGURE 13:14 Transmittance of both blue and pink CR-39 
lenses (light fashion tints). 

Another popular filter for glare attenuation is a 
polarized filter. Although the electrical and magnetic 
fields of an electromagnetic radiation wave train remain 
perpendicular to their direction of propagation as they 
move through space, they don’t necessarily start out 
vibrating in any particular orientation about this path. 
Light waves from many sources, like the sun and 
incandescent lamps, can vibrate in every possible 
orientation as they travel along their path. (Imagine all 
of the possible orientations on a protractor.) When the 
vibration of light waves is confined to a single plane 
(i.e., horizontal, vertical, or some plane in between), the 
light is referred to as polarized. Figure 13:15 depicts 
the difference between non-polarized and linearly (or 
completely) polarized light from a front view of an 
imaginary wave train. 

Linearly PolarizedNon-polarized
 

FIGURE 13:15 Light waves from many sources are not 
polarized, and vibrate in every possible direction about their 
direction of propagation (or travel). When light waves only 
vibrates in one plane, they are linearly polarized. The linearly 
polarized light above is horizontally polarized. 

Light waves reflected off many dielectric surfaces, such 
as water, asphalt, and glass, become partially or 
completely polarized parallel to the surface. (Light 

waves incident on the surface at Brewster’s angle are 
linearly, or completely, polarized.*) Glare specularly 
reflected off a horizontal surface, for instance, is 
horizontally polarized. To reduce this reflected glare, a 
polarized filter can be employed that transmits only the 
vertical components of incident light—absorbing the 
horizontally polarized veiling glare, which has been 
reflected off the surface. The action of a polarized filter 
on non-polarized light waves is depicted in Figure 
13:16. 

V

H

 
FIGURE 13:16 The molecules in a polarized filter only allow 
light vibrating in a single plane to pass through—thereby 
acting like imaginary ‘slits.’ Light vibrating perpendicularly 
to these slits is absorbed. 

Polarized filters are generally made by stretching a thin 
sheet of polyvinyl alcohol and soaking it with iodine. 
These filters are particularly useful for people engaged 
in water, snow, or driving activities. It is important to 
note that polarized filters selectively attenuate certain 
forms of glare (horizontally reflected glare), not just the 
overall amount of light passing through the lens like the 
conventional filters previously discussed. 

Recall from Section 2.1 that ultraviolet radiation is a 
form of electromagnetic radiation immediately adjacent 
to the blue/violet end of the visible spectrum (from 200 
to 380 nm). Although invisible to the human eye, 
ultraviolet radiation does contain more energy than 
visible radiation. It is now generally accepted that 
lenses used for sun protection should attenuate nearly 
all ultraviolet (UV) radiation. Over the years, it has 
been determined that UV radiation contributes to the 
development of various ocular disorders, such as 
photokeratitis (or snow blindness), cortical cataract, 
pinguecula, and pterygium. It also might be as a 
contributing factor for age-related macular 
degeneration. 

                                                           
* Brewster’s angle β is given by 

 β = −tan 1 n  

where n is the index of refraction. For instance, β is 53° 
for water and 57° for glass. 
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13.6 LENS COATINGS 

In addition to lens tints and treatments, a variety of 
coatings are often applied to spectacle lenses to enhance 
either their optical and/or mechanical performance. 
Anti-reflective coatings can be applied to glass and 
plastic lenses to minimize surface reflections. Scratch-
resistant coatings can be applied to improve the 
abrasion resistance of plastic lenses. 

Each surface of a spectacle lens acts as a curved mirror, 
and reflects a fraction of the incident light. The reflected 
image of an object is often referred to as a ghost image. 
While the size and clarity of the reflected ghost images 
vary with the power and form of the spectacle lens, the 
brightness (or intensity) of the ghost images increases 
with the refractive index of the lens material, as 
discussed in Section 3.2. The reflectances of some 
common lens materials are shown in Table 22. 

TABLE 22 Reflectances of common lens materials 

Lens Refractive Reflectance (ρ) 
Material Index 1 Side 2 Sides 
CR-39 Plastic 1.499 4.0% 7.7% 
Crown Glass 1.523 4.3% 8.3% 
Spectralite 1.537 4.5% 8.6% 
Polycarbonate 1.586 5.1% 9.8% 
1.60 Plastic 1.600 5.3% 10.1% 
1.66 Plastic 1.660 6.2% 11.7% 

Specular surface reflections and ghost images produce 
visual “noise,” which degrades retinal image quality 
without contributing useful visual information. They 
reduce visual performance and comfort via two 
principal phenomena: visual disturbance caused by 
ghost images and reduced visual discrimination caused 
by veiling glare. 

There are five unique specular reflections that the 
wearer may notice from spectacle lenses, as shown in 
Figure 13:17. These reflected ghost images could 
become visually disturbing to the wearer when the 
following conditions are met: 

1. The reflected ghost image is bright (or intense) 
enough to stand out against the background. 

2. The vergence (or power) of the reflected ghost 
image is similar to the focal power provided by the 
spectacle lens, or can be made similar through 
accommodation. 

3. The reflected ghost image lies close to, but not 
necessarily in, the wearer’s line of sight. 

I

II

V

III

IV

 
FIGURE 13:17 The Specular lens reflections from front (III – 
V) and rear (I & II) light sources. 

These ghost images can also serve as sources of glare 
within the visual field. Moreover, when the reflected 
glare source is large or defocused, it can produce a 
veiling glare over a large portion of the visual field. 
Since this reflected glare is added to the brightness of 
both the object of interest and its background, the 
difference in brightness between them remains constant. 
However, since the background brightness, which is the 
denominator of the contrast expression above, still 
increases, the contrast of the retinal image decreases. 
Images with lower contrast are more difficult to resolve 
than images with higher contrast, which effectively 
reduces visual acuity. Hence, glare from lens reflections 
serves to reduce both contrast sensitivity and visual 
acuity. 

Anti-reflective coatings consist of one or more thin 
layers (or films) of various inorganic oxides such as 
magnesium fluoride, titanium dioxide, and silicon 
dioxide. These films are often applied by vacuum 
deposition, and utilize the principles of constructive 
and destructive light interference. These principles are 
illustrated Figure 13:18. 
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Out Of Phase Destruction

WAVE 1

WAVE 2

SUM OF
WAVES

A  

In Phase Construction

WAVE 1

WAVE 2

SUM OF
WAVES

B  
FIGURE 13:18 Light interference produced by thin films. A) 
Light waves ‘out of phase,’ so that their crests and troughs do 
not coincide, exhibit destructive interference and cancel out 
each other. (The dotted lines are the resultant wave.) B) Light 
waves ‘in phase,’ so that their waves do coincide, exhibit 
constructive interference and reinforce each other. 

Anti-reflection coatings on glass lenses generally 
employ a single layer of magnesium fluoride. This 
coating allows for maximum interference in the yellow-
green band of the visible spectrum. Red and blue light is 
not completely canceled, so these lenses produce a 
slight purple surface reflection (or reflex color). Modern 
AR coatings on plastic lenses often employ five or more 
layers, which alternate between lower and higher 
indices of refraction. These multi-layer (or broadband) 
coatings are able to cancel reflected light over a wider 
band of colors. 

The application of an anti-reflection (AR) coating can 
increase the transmittance of a lens up to nearly 100%, 
while virtually eliminating visible reflections from the 
surface of the lens. This can be thought of as a two step 
process: The reflections are almost completely canceled 
by destructive interference, while the light passing 
through the lens is reinforced to almost 99% or more 
transmittance by constructive interference. These 
optical interference effects are produced by the 
interaction of reflections between the various interfaces 

of the AR-coated lens (i.e., the interfaces between air, 
the AR layers, and the lens substrate). For comparison, 
the transmittance spectra of an AR-coated and a non-
coated CR-39 lens are provided in Figure 13:19. 
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FIGURE 13:19 Transmittance of both a clear (solid line) and 
an AR-coated (dashed) CR-39 lens. Note that the lens 
transmits little ultraviolet radiation (below 380 nm), and 
evenly transmits the visible spectrum (between 380 to 760 
nm). With the application of an anti-reflection coating, the 
transmittance of the lens material approaches 100%. 

Scratch-resistant coatings are often applied to plastic 
lenses to increase the abrasion resistance of the lens 
surface, which is generally quite soft. Many scratch-
resistant (SR) coatings are made from chemical resins 
containing compounds, such as polysiloxane, which 
contain silica (like glass) and organic polymers. SR 
coatings often have to balance tintability with scratch 
resistance—i.e., softer coatings tint better but scratch 
more. Modern SR coatings are now available that are 
extremely durable. Conventional SR coatings are often 
1.5 to 3 × as scratch-resistant as uncoated CR-39, while 
many ‘ultra-tough’ coatings are 3 to 6 × as scratch-
resistant. These ultra-tough type coatings are often non-
tintable. SR coatings can be applied at the 
manufacturing, laboratory, or in-office level. The 
quality of these coatings may vary. 

Scratch-resistant and anti-reflective coatings can be 
quite brittle and glass-like in nature, which can reduce 
impact resistance. Consequently, lenses with these 
coatings may be more susceptible to fracturing upon 
impact. Furthermore, some of the newer high-index 
materials in use today are often ground to a 1.5-mm—or 
even 1.0-mm—center thickness. Many of these lens 
materials are robust enough to pass the drop ball test 
without any additional treatments. Other materials may 
have a special primer coating applied to them to help 
absorb and dissipate some of the impact energy. 

The base material (e.g., CR-39) upon which these lens 
treatments and coatings are applied is referred to as the 
lens substrate. For optimum optical and mechanical 
performance, lens treatments and coatings should be 
chemically engineered for compatibility with the 
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substrate, as well as with each other. Adhesion, thermal 
expansion, and other physical properties must be 
optimized to create an integrated system, as depicted in 
Figure 13:20. 

Primer coat
Tint or dyeFront surface

of substrate

Top coat
AR stack
Hard coat

 
FIGURE 13:20 For optimum mechanical and optical 
performance, each lens treatment and coating should be 
chemically engineered for compatibility to create an 
integrated system. 

13.7 CHROMATIC ABERRATION 

Lens design generally addresses the monochromatic 
aberrations, like oblique astigmatism, which are 
independent of color. Chromatic aberration is a result 
of the inherent dispersive properties of a lens material. 

Recall from Section 2.4 that the refractive index of a 
lens material actually varies as a function of color (or 
wavelength). The Abbé value of a lens material is a 
measure of the refractive efficiency of the material; or 
how efficiently the material bends light without 
breaking it up into its component colors (dispersion). 
Put another way, the Abbé value provides us with a 
comparison between the mean refractivity (nD - 1) of a 
lens material and its mean dispersion (nF - nC):*  

EQ. 76 ν =
−

−
n

n n
D

F C

1
 

where v is the Abbé value of the material, nD is the 
refractive index of the material at 587.56 nm (yellow 
light), nF is the refractive index at 486.13 nm (blue 
light), and nC is the refractive index at 656.28 nm (red 
light). 

The mean refractivity is related to the ‘quoted’ index of 
refraction of the lens material, which is calculated using 
a wavelength very near to the center of the visible 
spectrum. In addition, the chosen wavelength generally 
lies close to the peak photopic sensitivity of the human 
eye, which is related to the maximum luminous 
efficiency of the eye. This reference index, which is 
used to calculate mean refractivity, is based upon the 
helium d line in the United States. (See Section 2.4). 
The mean dispersion is the difference in refractive 

                                                           
* The Abbé value is actually equal to the reciprocal of 
the dispersive power of a lens material, which is the 
ratio of mean dispersion to mean refractivity. 

indices between the blue and red ends of the spectrum at 
specified wavelengths. 

Chromatic aberration is a measure of the color 
dispersion produced by optical materials. Materials with 
lower Abbé values are more susceptible to chromatic 
aberration, since they disperse light more. White light 
refracted through a lens or prism with significant 
chromatic aberration will be spread into its component 
colors, producing multiple images (one for each color) 
as shown in Figure 13:21. When a lens with power 
disperses light, each color can create its own focal 
length and image size. 
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FIGURE 13:21 Chromatic dispersion of white light into its 
component colors by a prism. 

Spectacle lenses can suffer from both monochromatic 
and chromatic aberrations. Like the monochromatic 
aberrations, chromatic aberration also increases towards 
the periphery, as shown in Figure 13:22. 
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FIGURE 13:22 Chromatic aberration will vary directly with 
the amount of prism Δ at a given point through the lens using 
Prentice’s rule (Eq. 42), and is inversely proportional to Abbé 
value of the lens material. 

The amount of lateral chromatic aberration produced by 
a lens is given by (Davis 20): 

EQ. 77 δ
ν

=
Δ

 

where δ is the amount of chromatic aberration in prism 
diopters (Δ), Δ is the amount of prism at a given point 
through the lens, and ν is the Abbé value of the lens 
material. 

Example 

A person looks 10 mm (1 cm) away from the optical 
center of a +5.00 D polycarbonate lens, which has an 
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Abbé value of 30. How much chromatic aberration does 
the wearer experience? 

δ =
1 5 00

30
( . )

 

δ = 017.  

∴ Chromatic aberration is 0.17Δ. 

The calculated amount of chromatic aberration is the 
prismatic difference between the red and blue portions 
of the spectrum. It is important to consider the fact that 
the Abbé value of both mineral and organic lens 
materials generally decreases as the refractive index of 
the material increases. Consequently, higher-index 
materials have more chromatic aberration for the same 
power. Notice the decrease in Abbé values as the 
refractive indices increase in Figure 13:23. 
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FIGURE 13:23 A comparison between the Abbé value and 
refractive index of representative glass and plastic lenses. 
Notice how the Abbé value decreases as the index of 
refraction increases for both materials. 

The chromatic aberration experienced by the wearer is 
directly proportional to the prism produced at a given 
point through the lens, and inversely proportional to the 
Abbé value of the lens material. Chromatic aberration 
can result in both blurred vision and a fringe of color 
around objects viewed through the periphery. 
Fortunately, this aberration is only a concern in high 
powers, or in materials with low Abbé values. 

For precision optical instruments, achromatic doublets 
are often used to minimize chromatic aberration. 
Doublets are constructed by combining two lenses made 
from glasses of differing refractive index and Abbé 
values. For spectacle lenses, chromatic aberration can 
be minimized with the judicious selection of lens 
materials (i.e., low Abbé value). Refer back to Table 20 
a description of common lens materials and their Abbé 
values. 

Since modern ‘thin & light’ lens materials often have 
lower Abbé values, proper lens design is critical. 

Whenever possible, the best form base curve 
recommended by the manufacturer should be utilized. If 
the blur caused by monochromatic aberrations is 
minimized with the proper selection of base curves, or 
with a well-designed aspheric surface, the wearer’s 
sensitivity to the chromatic blur may be kept below his 
or her threshold of tolerance. This can reduce non-adapt 
cases (Davis 141). 
 
Spectralite is a registered trademark and Finalite is a 
trademark of SOLA International, Menlo Park, California. 
RLX Lite is a registered trademark of Signet Armorlite, San 
Marcos, California. 
PhotoGray Extra, PhotoBrown Extra, and PhotoSun II are 
registered trademarks; and, 16 and Thin & Dark are 
trademarks of Corning, Inc, Corning, New York. 
Transitions is a registered trademark and XTRActive is a 
trademark of Transitions Optical, Inc., Pinellas Park, Florida. 
Ormex is a registered trademark of Essilor International. 
Changers is a trademark of Seiko Optical. 
CR-39 is a registered trademark of PPG Industries, Pittsburgh 
Pennsylvania. 
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APPENDIX A: BASIC OPTICAL MATHEMATICS 
METRIC CONVERSION 

Optical problems typically utilize the metric system of measurement. Here are some common conversions: 

• 1 kilometer (km) = 1,000 meters = 100,000 centimeters = 1,000,000 millimeters 
• 1 meter (m) = 0.001 kilometers = 100 centimeters = 1,000 millimeters 
• 1 centimeter (cm) = 0.01 meters = 10 millimeters 
• 1 millimeter (mm) = 0.1 centimeters = 0.001 meters 
• 1 micrometer (μm) = 0.001 millimeters = 0.000001 meters 
• 1 nanometer (nm) = 0.000001 millimeters = 0.000000001 meters 
• 1 angstrom (Å) = 0.0000001 millimeters = 0.0000000001 meters 
• 1 inch = 2.54 centimeters 
• 1 centimeter = 0.3937 inches 

For instance, 

5,000 Å = 500 nm = 0.500 μm = 0.000500 mm = 0.0000500 cm = 0.000000500 m 

For extremely large or small numbers, scientific notation is often used. A number expressed in scientific notation is 
written as a number between 1 and 10 multiplied by a power of 10 (i.e. x × 10y). Remember that negative powers of 10 
denote fractions (i.e. 10-y = 1/10y). For instance, 

1×103 = 1 × 10 × 10 × 10 = 1000 

1×10-3 = 1 × 1 / (10 × 10 × 10) = 1 × 1/1000 = 0.001 

0.00006782 = 6.782×10-5 

67820000 = 6.782×107 

RECIPROCALS 

Reciprocal relationships are used extensively in optics. The reciprocal, or inverse, of a number can be obtained by 
dividing the number into 1. If a number (y) is equal to the reciprocal of another number (x), then 

y
x

x= = −1 1  and x
y

y= = −1 1  

If y is the reciprocal of x, then x is also the reciprocal of y. Further, as y increases, x decreases. This means that when x 
becomes infinitely large (x → ∞), y becomes infinitely small (y → 0), and vice versa. The → symbol means 
“approaches.” If the absolute value (or magnitude) of the denominator is less than 1, the absolute value of the 
reciprocal will be greater than 1 (or > unity). Similarly, if the absolute value of the denominator is greater than 1, the 
absolute value of the reciprocal will be less than 1 (or < unity). Negative numbers will still have negative reciprocals. 
Remember that the denominator can not equal zero, or the result is undefined and cannot be solved.  

NUMERIC RELATIONSHIPS 

In this section we will briefly identify and describe three common numeric relationships employed throughout this 
workbook. This workbook often speaks of proportional and inversely proportional relationships. When one quantity 
varies at the exact same rate that a second quantity does, we say that the quantity varies directly as, or is directly 
proportional to, the second quantity. If k is some constant, nonzero value, y will vary directly as x, so that 

y k x= ⋅  

If the value of x doubles, for example, y will also double. The value of x will always be a multiple of y. 

As a result, an increase in x will result in a similar increase in y. When one quantity varies inversely with a second 
quantity (e.g. the reciprocal), we say that the quantity varies inversely as, or is inversely proportional to, the second 
quantity. Once again, if k is some constant value, y will vary inversely as x, so that 
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y
k
x

=  

Another relationship, the ratio, is a simple method of comparing numbers or variables to each other. A ratio is 
basically the fraction of one number to the other, and is usually written in either one of two forms:  y : x or y / x. 

GEOMETRY 

Optics makes so much use of geometrical constructions, that it has an entire branch called geometrical optics. A 
concise review of the more fundamental concepts of geometry is provided here. Consider the circle in Figure I. Point C 
serves as the center of this circle. The line segment CR begins at the center and terminates at the circle. This line 
segment is referred to as the radius of the circle. The line segment DD' passes through the center (across the entire 
circle) and has its endpoints located on the circle. This line segment is referred to as a diameter of the circle. The 
diameter of a circle is equal to twice its radius. The line TT' contacts the circle at a single point (R). We say that this 
line is tangent to the circle at that single point. Lines tangent to a circle are perpendicular to the radius or diameter 
ending at that point. Therefore, line TT' is perpendicular to line CR. 

• RC

D

D'

T'

T

 
FIGURE I The circle, radius, and diameter. 

Two triangles that have the exact same shape (i.e., angles), but are different in size, are referred to as similar 
triangles. Similar triangles will have equal corresponding angles and corresponding sides that are proportional in size. 
For instance, we know that the two triangles in Figure II are similar because they share a common angle (A and A’), 
and they both have a 90° angle (C and C’). We can infer from this that angles B and B’ are also equal. Therefore, the 
sides of these two triangles are also proportional to each other. 

a'

a

b'

c'

b

c

A
A'

B'

C'

B

C

 
FIGURE II Similar triangles. 

This type of proportional relationship can be expressed as 

a
a

b
b

c
c′

=
′

=
′

 

Also, 
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∠
∠ ′

=
∠
∠ ′

=
∠
∠ ′

A
A

B
B

C
C

 

Triangles have some useful other properties, as well. Using the triangle illustrated in Figure III: 

• The sum of the interior angles of a triangle add up to 180°: 

∠ + ∠ + ∠ =A B C 180 

• The exterior angle of a triangle is equal to the sum of the opposite (or remote) interior angles: 

∠ = ∠ + ∠D A B  

a

b

c
B

A C D

 
FIGURE III Interior and exterior angles. 

Lastly, we will consider some additional concepts from geometry related to parallel lines and the angles created by 
them. In Figure IV, the lines AA' and BB' are parallel to each other. A third line, CC', is a transversal intersecting the 
other two. The following relationships can be established between the angles created by these intersections: 

∠ = ∠ = ∠ ′ = ∠ ′1 3 1 3  

∠ = ∠ = ∠ ′ = ∠ ′2 4 2 4  

A

B'B

A'

C

C'

3
21

4

3'
2'1'

4'

 
FIGURE IV The corresponding angles of two parallel lines and a transversal. 

TRIGONOMETRY 

Several relationships can be established when one angle of a triangle is equal to 90°. This special triangle is referred to 
as a right triangle, and is shown in Figure V. 

a

θ

b

c
HYPOTENUSE

90

 
FIGURE V A right triangle. 

One such relationship, the Pythagorean theorem, states that for a right triangle the sum of the squares of the legs is 
equal to the square of the hypotenuse (the longest side). This can be expressed as 

a b c2 2 2+ =  

Optical mathematics frequently involves trigonometric functions, as well. For a given angle, a predetermined ratio 
exists between certain sides of a right triangle. These ratios can be found using a table of trigonometry functions or a 
scientific calculator. There are three common trigonometric functions: the sine (abbreviated sin), the tangent 
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(abbreviated tan), and the cosine (abbreviated cos). For the angle (θ) in the triangle above, these trigonometric 
relationships can be expressed as: 

sinθ = =
a
c

opposite
hypotenuse

 

tanθ = =
a
b

opposite
adjacent

 

cosθ = =
b
c

adjacent
hypotenuse

 

In addition to these trigonometric functions, there are important trigonometric identities like: 

sin cos2 2 1θ θ+ =  

tan
sin
cos

θ
θ
θ

=  

We can also relate trigonometric functions to convert between polar and rectangular coordinates. Rectangular 
coordinates use a horizontal directed distance x and vertical directed distance y to specify the location of a point P at 
(x, y). These directed distances can also represent the magnitude and direction of a vector. Polar coordinates use a 
single directed distance r and the directed angle θ from the x-axis to specify the location of a point P at (r, θ). The 
directed distances of either system are from the origin O at (0,0). 

•
r

x
θ x

y

y

O

P

II I

III IV
 

FIGURE VI Polar and rectangular coordinates. 

To convert back and forth from polar to rectangular coordinate form, consider Figure VI. The rectangular coordinates 
(x, y) are related to the polar coordinates (r, θ) by: 

x r= ⋅ cosθ  

y r= ⋅ sinθ  

Moreover, the polar coordinates (r and θ) are related to the rectangular coordinates (x and y) by: 

r x y= +2 2  

θ = −tan 1 y
x

 

When solving for the angle θ, it is important to note which quadrant (i.e., I, II, III, or IV) the point P falls in. For 
instance, angle 30° has the same tangent that angle 210° has. In many cases, the simplest way to deal with this is to 
first determine the arctangent (tan-1) of y / x, and then apply the following rules for the quadrant that the point P falls 
in—ignoring the sign (±) of the originally calculated angle θ so that it is always positive: 
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 Quadrant I: Actual θ is equal to calculated θ 
 Quadrant II: Actual θ is equal to 180° - calculated θ 
 Quadrant III: Actual θ is equal to 180° + calculated θ 
 Quadrant IV: Actual θ is equal to 360° - calculated θ 

Remember to ignore the sign of the original angle θ after you have calculated it; simply treat it as positive (+). 
Following the quadrant rules will ensure that the final angle adheres to the appropriate convention. 

RADIANS 

We are all familiar with the degree system of angular measurement. A central angle of a circle that subtends an arc 
equal to 1/360 of the circumference of that circle is equal to 1°. Therefore, it takes 360° to make a complete revolution 
around a circle. Another method of angular measurement uses the radian system. The angle θ, in radians, is equal to 
the length of the arc a subtended by that central angle, divided by the radius of the circle r: 

θ =
)a
r

 

•

a
r

r
θ

 
FIGURE VII Radian measure. 

When the length of arc a is equal to the radius r, angle θ is equal to 1 radian (abbreviated rad). Because the 
circumference of a circle is equal to 2πr, an angle of 360° is equal to 2π rad. This means that 1 rad ≈ 57.3°. 
Conversely, 1° ≈ 0.0175 rad. 

The ≈ symbol means “approximately equal to.” Therefore, the sine of an angle is approximately equal to the angle 
itself (in radians) for small angles. This also holds true for the tangent of a small angle. 

SMALL ANGLE APPROXIMATIONS 

Periodically, we will employ ‘small angle approximations’ to simplify some of the formulas that we will encounter. 
This is a way to approximate a trigonometric function. For instance, the sine of an angle (θ) can be expressed as 

sinθ θ
θ θ

= − + −
3 5

6 120
L  

where θ is the angle in radians. 

For small angles, this reduces to 

sinθ θ≈  

Small angle approximations also make it possible to find the sine or tangent of a small angle without the use of a 
scientific calculator or table of trigonometric functions. Since we know that there are approximately 0.0175 rad in 
every 1°, we can multiply the angle θ by this amount to determine its value in radians. And for small angles, this value 
is roughly equal to both the sine and the tangent of angle θ. For instance, consider the approximate radian value of a 
15° angle: 

θ θRAD DEG= 0 0175.  

( )θRAD = °0 0175 15.  

θRAD = 0 2625.  rad  
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The sine of a 15° angle is 0.2588 and the tangent of a 15° angle is 0.2679. These are both quite close to our radian 
value for 15°. Note that in general the sin θ < θ RAD < tan θ. 

BINOMIAL EXPANSION 

Another approximation that we will make frequent use of involves a binomial (having two terms) expansion. When 
one term of a binomial is equal to 1, and the other term x is some value that is less than 1, a binomial can be 
represented with the following series 

( )
( ) ( )( )

1 1
1

2
1 2

6

2 3

± = ± ⋅ +
−

±
− −

+x n x
n n x n n n xn

K  

When x is much less than 1 (x << 1), we can drop off the ‘higher order’ terms and reduce this series to 

( )1 1± ≈ ± ⋅x n xn  

Although the application of this approximation may not be obvious at first, some formulas that involve square-roots (n 
= ½) or reciprocals (n = -1) can be made more manageable. For instance, consider this square-root function: 

y x= +1  

This can be rewritten algebraically as  

( )y x= +1
1

2  

Now, after using our binomial expansion and dropping higher order terms, we have: 

y x≈ +1 1
2  

An approximation of this form is easier to work with in some situations. 
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APPENDIX B: DERIVATIONS 
CONJUGATE FOCI FORMULA 

To derive the conjugate foci formula (Eq. 13) for a lens surface, we will make use of Figure I. Figure I uses ‘all 
positive’ measurements; meaning that object vergence, surface power, and image vergence are all positive values. 
Recall that for small angles, the sine and tangent of an angle are nearly equal to the angle itself, when it is expressed in 
radians. Applying a small angle approximation (sin i ≈ i) for Snell’s law of refraction (Eq. 5) gives us: 

n i n i⋅ = ′ ⋅ ′sin sin  

′ ⋅ ′ ≈ ⋅n i n i  

n n'

NORMAL

l'

r

C
• •

L'

h i'

i

θ1

2

•

l

L
αα'

d

 
FIGURE I Conjugate foci formula derivation. 

Rays 1 and 2 in Figure I are converging to form a virtual object at point L. After refraction by the lens surface, they 
intersect each other at the real image point L'. We are trying to develop a relationship between the reduced object 
distance (or vergence), the image distance (or vergence), and the refractive power of the surface. Ray 1 strikes the 
surface perpendicularly (normal), and is not refracted. Ray 2 strikes the surface at the height h; the normal to the 
surface at this point has been drawn through the center of curvature at C. The angle of incidence i of the ray 2 is equal 
to the difference between angle θ and angle α (because of our remote interior relationship, θ = i + α), or 

i = −θ α  

The angle of refraction i' is equal to the difference between angle θ and angle α' (because of our remote interior 
relationship, θ = i' + α'), or 

′ = − ′i θ α  

Angle i is also related to the angle of refraction i', by our approximation of Snell’s law, 

n i n i⋅ ≈ ′ ⋅ ′  

After substituting for angles i and i', we can show that 

( ) ( )n nθ α θ α− = ′ − ′  

Now we can make some small angle approximations for the angles α, α', and θ. From Figure I, we know that: 

α ≈
h
l

 

 

And, 
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′ ≈
′

α
h
l

 

Finally, 

θ ≈
h
r

 

where h is the height of the ray, l is the object distance, l' is the image distance, and r is the radius of curvature of the 
surface in meters. 

Now let’s substitute these back into our earlier relationship: 

n
h
r

h
l

n
h
r

h
l

−
⎛
⎝⎜

⎞
⎠⎟ = ′ −

′
⎛
⎝⎜

⎞
⎠⎟  

We can now factor out and cancel the height h, which is common to each term. This means that the heights of the rays 
no longer matter (at least for small angles). We can then distribute n and n', and rearrange the terms to give us the 
conjugate foci formula (Rubin 70): 

′
′

=
′ −

+
n
l

n n
r

n
l

  

where n is the refractive index to the left of the surface (on the object side), n' is the refractive index to the right, r is 
the radius of curvature, l is the object distance, and l' is the image distance in meters. 

SPECTACLE MAGNIFICATION FORMULA 

To derive the spectacle magnification formula (Eq. 71) for a thin lens, we will make use of Figure II. Recall that 
angular magnification M is the ratio of the angle θ' subtended by the image produced by the lens, at the nodal point of 
the eye N, compared to angle θ subtended by the original object (Eq. 70), so that (Rubin 207): 

M =
′θ

θ
 

θ
θ '

f'

•N

h

O'

1

2
3

θA
A'

F''•

θ '

 
FIGURE II Thin lens magnification. 

Rays 1, 2, and 3 are parallel rays of light from an object at optical infinity (∞). All three rays eventually intersect in the 
secondary focal plane of the lens at point F''. Ray 1 passes without deviation through the optical center of the lens—
which, we are assuming, is infinitely thin. Ray 2 from the object has been extended through the nodal point N to 
demonstrate the angle θ that the object would have subtended at the nodal point, if no lens had been in place. This 
angle (θ) is also the same angle the angle that ray 1 creates as it crosses the optical axis AA'. Recall that rays of light 
passing through the nodal point of the eye are not deviated. Ray 3 from the object is refracted to point F'' and passes 
through the nodal point N along the way. Ray 3 creates angle θ', which is the angle the image subtends at the nodal 
point N. 
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Using the construction in Figure II and small angle approximations for θ' and θ, we can see that angle θ is given by 

θ ≈
′
′

O
f

 

Further, angle θ' is given by 

′ ≈
′

′ −
θ

O
f h

 

Recall that the angular magnification is M defined as 

M =
′θ

θ
 

After substituting our new relationships for angle θ and angle θ', the magnification M is given by 

M
f h

f

=

′
′ −

′
′

O

     
O

     
 

M
f

f h
=

′
′ −

 

Substituting the focal power relationship (i.e., the quantity 1 / F) for f', and clearing out the fractions, gives us the 
formula for the spectacle magnification formula for a thin lens: 

M
h F

=
− ⋅

1
1

 

where h is the distance from the nodal point to the lens in meters and F is the focal power. 
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